
Experimenting With Embedded ControlControl

Experimenting With Embedded
Control Using the

µCEL TM

Development System

by Johnathan Conley

SBC65V1B Single Board Computer

µCEL TM Copyright c 1992 – JComm LAB 1

1

Experimenting With Embedded ControlControl

Chapter 1

Quick Summary
...

This chapter is for those of you who want to get right to work, and already have some

experience with microprocessors or microcontrollers. The following is a summary of the µCEL TM

development system.

Getting Started
1.) Hook up the SBC65V1B controller
2.) Initiate the power up blink test
3.) Browse through memory and exercise I/O using the SBC monitor & JTerm

Development Cycle Overview
1.) Copy Template.ASM to your new source code file name: "YourFile.ASM"
2.) Use your editor to edit your source code
3.) Assemble your source code using JAsm, the cross-assembler
4.) Download your "ramware" object .ROC file created by JAsm using JTerm
5.) Run Your Program Using JTerm
6.) Debug your code
7.) Repeat steps 2 through 6 until done

Applications:
Later we'll put the µCEL TM system to use by making a capacitance meter. We'll combine a

little bit of hardware with some software to implement this project. In later experiments, we'll either
use a component to implement a simple function or we will combine components to make a more
complex interface.

Make it DO something!!
Design Ideas:
• High Speed serial interface
• Battery backed static ram
• Real time clock
• Push button switch interface
• Keypad and LCD Display driver
• Intelligent phone circuits (answering machines, etc.)
• Plotter buffer/translator
• Eprom burner/memory extention EPROM emulator
• Custom remote terminal
• Remote temperature monitoring interface
• Intelligent Stepper motor driver
• Programmable drilling/routing engraving

µCEL TM Copyright c 1992 – JComm LAB 2

2

Experimenting With Embedded ControlControl

• Pulse-electroplating controller
• Data logger
• Remote test equipment
• Weather Station
• Hydroponic garden and greenhouse experiments
• On-board automobile/dragster computer
• Air pollution monitor
• Custom HAM radio devices
• Laboratory experiment monitor
• Remote intelligent relay control
• Custom burglar alarm
• Custom sprinkler systems
• Networking Controller
• Single-chip µController development system
• Single-chip µC emulator
• Multiple Time Delay Relays
• Model railroad controller
• Industrial Control
Applications Limited only by your imagination! (and bucks & time)

Getting Started-Details
 Hook up the SBC65V1B

Connect the power cable. This SBC (single board computer) runs on +5V power. Plug in
the connector PJ1, included with your SBC, into its header. Note that the connector is "keyed" so
that the flat part of the connector contacts the pc board (the 'nib' will be on the topside). Use the
enclosed documentation to locate power & ground on the pcb - side of the connector, or use an
ohmeter. Use pin16 of U6 to detect the +5V line and pin 8 of U6 for ground.

Measure your power supply voltage with a voltmeter before you connect it to your SBC. It
should read +5V. Once you are certain you know where to connect power, attach the two leads
from the SBC connector to your power supply with the power off. Do a visual and an ohm check
before you apply power. Verify that your connections are correct. Now, apply power.

Your first indication of a working unit will be led D1. It should be lit. If not, press the reset
button S1. If there is no led indication, check the voltages on the IC's with a voltmeter.

Your power supply should be able to supply at least 350 milli-amps (mA).
Power-up Blink Test

Locate the 2-pin header J15 near pin 4 of U19. Slide a shorting jumper over J15 (new units
will come with this jumper installed) and then apply power and depress the reset button S1. The
led D1 should blink at about a once-per three-second rate.
Browse Through Memory

Connect the female end of the serial cable supplied, to the male nine-pin connector on
your IBM or compatible. The male end of the cable plugs into the female nine-pin serial connector
on the SBC65V1B.

Run the terminal program "JTerm." You should observe a menu with lots of distractors.
Near the bottom of the screen you should see a "1" being sent to the screen from the SBC each
time the led blinks. This verifies that your serial connection is complete and your SBC is working.

Remove the shorting jumper from J15 on the SBC. Within a few seconds, you should see
the message JComm LAB uCEL (TM) XaMonV4B-1. You are now ready to browse.

µCEL TM Copyright c 1992 – JComm LAB 3

3

Experimenting With Embedded ControlControl

First type the "4" command. You will see the buffer address, and the buffer size. Now, type
the "6" command. This is a memory dump. Notice the address at the left of the screen, and the
corresponding sixteen bytes. Now type the "7" command, followed by two hex letters "A-F" or
"0-9." This allows you to fill memory with any hex value you would like. Notice that all of these
operations begin at the starting address specified, and are as long as the buffer size specified.
Control-N will give you the JTerm menu. Take time to read and test each command. The worst
thing that can happen while you are exploring is that you will have to momentarily disconnect
power from the SBC and depress its reset button.

One exception, the Control - D 'download' command might hang up your PC if you do not
have a ROC file present (in your directory) ready to download.

Development Cycle Details
Copy the template.

The Template.ASM can be copied to a different file name at the start of each new project.
This file gives you a foundation for some consistent documentation. You may decide on a different
format or have some ideas of your own. If you do, don't hesitate to implement them. Doing
regular, readable and consistent documentation is a REAL good habit to get into!!
Edit your source code

Some like to use the editor in a "shell" like Directory Commander (shareware) to both edit
their source code and run JAsm or JTerm.
 Cross-assemble your source code

by running JAsm. A menu will present itself of all the .ASM files contained in the directory
you run JAsm from. Use the up and down arrow keys to highlight the desired file, then press the
"return" key.
 There is a file called Xasm.CFG that instructs the assembler as to the type of files to
generate. If all four values are "FALSE", the assembler will only generate a .ROC file. The .ROC
file is the executable or object code. If this object code is burned into an Eprom, the code is called
firmware. If the code is downloaded into the SBC65V1B ram, it may be called "ramware."

Edit the Xasm.CFG file and used different BOOLEAN (TRUE or FALSE) values, and see
what types of files JAsm generates.
Run JTerm and Download your Ramware

Run JTerm and notice the menu presented. There are several commands to explore, but
you don't have to be overwhelmed. Just take each command one-at-a-time. For now, type control-
D and notice the menu of the .ROC files on your directory. Select the file you want to download
and press return. The downloader will automatically set the buffer size, and send your code
starting at the "ORG" address previously set by using the "1" command. The default value for
ORG is 0500 hex.
Run your program using JTerm. All you have to do now is press control-z and then "G" for "Go.'
Debug your code

There is some bad news and some good news. The bad news is that there is no debugger
per se with this system. The good news is that you won't need one if you follow healthy top-down
structured programming practices. There is a BRK instruction you can insert into your source
code, that will halt your program and display the current registers.

There is even a vector you can install that will allow you to insert a "display-key-variables"
routine so that you can monitor some of the things that a more complete debugger would let you
look at.

A list of some of the more common errors made when assembly programming are included
in the section on the JAsm cross-assembler.

µCEL TM Copyright c 1992 – JComm LAB 4

4

Experimenting With Embedded ControlControl

Review
The development cycle is

1.) Edit
2.)Assemble
3.)Download
4.)Run
5.)Debug until your program behaves the way it is supposed to, you give up, or run out of

time.

You will find many useful subroutines/procedures included in the XaMonV4B monitor that
should ease your programming burden. The Hello.ASM source code is included so that you can
"practice" going through the cycle. Just a note of comparison: One C compiler's executable just to
put "Hello World" on the screen was 3K bytes, C++ 18K! µCEL includes "Hello World" source
code so you can see how much code this system uses. (Its not much) P.S. Don't forget to back
up your files!

µCEL TM Copyright c 1992 – JComm LAB 5

5

Experimenting With Embedded ControlControl

Chapter 2

Introduction
...

How many different computers do you use each day? For many of you the answer may be

one or two. In reality you may be using more computing power than you are aware of. Many types
of appliances and machinery "hide" a CPU or micro-controller within, dedicating it to a specific
task.

 A term used to describe the use of a computer in this way is embedded control; the
computer is literally built right into the device or product. By using built-in "intelligence," your
design can have more features, flexibility, and be easier to use.

Embedded control is used all around you. Devices such as microwave ovens, burglar
alarms, automated sprinkler systems and laser printers have dedicated microcontrollers or
computers as part of their "guts."

Embedded control has been identified as a key technology for the 90's, and can be just
plain fun and useful for widget builders like me and you!

This article describes µCEL; a micro Control Experimenters Laboratory. At the heart of this
development system is a 65C02-based single board computer/controller. This system includes a
firmware monitor, communication software and a cross-assembler that runs on an IBM PC or
compatible. The entire system can be put together for around $250.00; and way less than that if
you are willing to raid your parts bins and do the construction yourself!

Keeping with the "hacker" spirit, µCEL is an open design. The controller has built-in
features to make it easy to program and interface. The goal was to make the hardware and
software both available and understandable.

µCEL's computer/controller can be used as a platform to learn about many aspects of
embedded control and interface design, and can be literally embedded into your project! You can
use the µCEL development system to teach yourself about:

Hardware design: How a microprocessor, clock, RAM and ROM and some "glue"
chips combine to make a small computer system

Interface design: How to get that small system to interact with the outside
world, using only a common plug board, a few external parts and some #22
solid
wire.

Machine language programming: How to hand assemble the CPU's hex
instruction codes, hand-enter and run them using the µCEL monitor.

Assembly language programming: Writing code that the 65C02 microprocessor
executes at the lowest level; developing that code using a Cross-Assembler that
runs on a PC.

µCEL TM Copyright c 1992 – JComm LAB 6

6

Experimenting With Embedded ControlControl

Monitor design: How small sequences of assembly language instructions can be
combined to make subroutines.

These subroutines can then be combined to create procedures that mimic
some of the operations used in high-level languages, such as Pascal and
Modula-2.
Assembler design: How a high level language can be used to write a program
that automates the generation of assembly language programs.

Development utilities: How a simple dumb-terminal program works.

How to up and download programs/data between the µCEL controller and a
host computer. How to use a monitor to debug your assembly programs.

You don't need to let all this learning potential scare you. µCEL was
designed so that you can be up and running very quickly. You can implement an
interface design (such as the capacitance meter described later,) in an evening!
From the above list, you can see that it is possible to explore embedded control
and related topics in depth. The fun part of all this is that you can learn a little bit at
a time. Stick with it, and you can find yourself designing and building some pretty
sophisticated PROGRAMMABLE projects!

System Overview:
The µCEL SBC65V1B controller

For a frame of reference, the SBC65V1B can be viewed as a 3.5" X 5.8" one slot "mother
board" (that in many ways mimics the 'old' Apple II+) that uses an IBM compatible computer for its
keyboard, disk drive and screen. Before you get too excited I'll add this disclaimer; This is NOT an
Apple clone. It does NOT use any of the Apple's monitor routines. Your old Apple II+ assembly
language program will require some modification before it will run on this board. Fans of the Apple
II+ will probably find the monitor provided with the SBC65V1B easy to learn, and the routines
easy to adapt to your particular application.

The "slot" for your interface is simple to use as well. This interface is called "H-Buss." (it
kinda looks like an 'H') To make your interfacing task easier, the H-Buss includes buffered
address and data lines, decoded select lines and various clock and control lines. You can
implement that hot idea of yours and build-ityourself rather than buy-from-the-shelf. Along with
some parts, all you need for small interfacing experiments is a commonly available breadboard
and number 22 solid wire, and a good idea.

µCEL TM System Features:
Size:

3.5" X 5.8".

CPU:
1 MHz 65C02

RAM:
Jumper programmable 2K,8K, 32K.

µCEL TM Copyright c 1992 – JComm LAB 7

7

Experimenting With Embedded ControlControl

Eprom:
Jumper programmable 2K, 4K, 8K, 16K, 32K OR 64K.

Components:
Uses common, readily available TTL 'LS' parts.

I/O:
8-individually programmed inputs
8-individually programmed out puts.
Serial port with Xon handshaking, and user-programmable baudrate.

H-Buss:
A "home builder" computer bus that receives an interface card.
It is possible to create a tight and solid module measuring 2" X 3.5" X 5.8".
It provides buffered address and data lines, extra decodes and clock and control
signals for your inter face.
Simple interfaces become much easier to breadboard, using a "3M" type
plugboard and #22 (.025 dia) solid hook up wire.

XaMonV4B Monitor:
More than 132 subroutines, using 4K of the Eprom address space.
Contains routines to handle low level I/O operations.
Includes interrupt routines, block memory moves, Ascii memory dump to screen,
upload and downloading, entering data, manipulating and redirecting I/O from
commands given by a host computer.
Routines can be modified for use by Atari, Pet, Kim, Sym, Aim, and Apple II+
users not having the 65C02 processor chip.

Power:
5V @ 200-450 ma, depending on components chosen.

JAsm Cross assembler:
Runs on IBM compatibles.
Does not require a hard disk.
Generates 6502 and 65C02 object code.
Accepts source code created from any word processor or editor that can
generate ASCII text files.

JTerm Software:
Use your IBM compatible to communicate with the SBC65V1B, "peek" and
"poke" within the SBC's memory and registers, download and run your assembly
programs and upload data from your SBC.

Documentation
Now that you have an idea of what is possible with this system, we will now discuss some

of the things you will need to know to make the best use of µCEL. I have tried to make these
explanations and this manual as painless as I know how.

µCEL TM Copyright c 1992 – JComm LAB 8

8

Experimenting With Embedded ControlControl

Conventions and Terms
Signal Naming

Before going into the details of the circuit operation, let's define a few conventions and
terms. All signals in this discussion (except clock signals) will follow the following format:

Signal Name . Assertion Level. The signal name describes the function of the signal
(what it does.) The assertion level describes what polarity the signal will have when it performs
that function.
For example,
Reset.L performs the function of reset and will be asserted (L)OW when it performs that function.
Read.H would perform a read function and would be asserted (H)IGH.

Numbering System
The following number representations will be used:

Binary base 2. Example 0011B
Decimal base 10. Example 65535Z (the Assembler uses suffix "Z")
Hexadecimal base 16. Example 0FFFFH (use a 0 before a hex number beginning with A-F)
If no suffix is given, use the context of the text as your guide. The JAsm assembler's default is
hex, so the suffix "H" is used only within this text and not within your source code text.

Overview of the remainder of this Book
In Chapters 3 through Chapter 11 we are going to cover the hardware design and

assembly of the µCEL SBC65V1B CPU I/O Module.
In Chapters 12 - 15 we will discuss the µCEL monitor and development software. This

includes a monitor listing.
To give you a flavor of embedded design, the section following Chapter 1? will discuss a

simple capacitance meter interface.
Also included is a hardware netlist of the PCB used in the SBC65V1B computer.

µCEL TM Copyright c 1992 – JComm LAB 9

9

Experimenting With Embedded ControlControl

Chapter 3

Block Diagram
...

The SBC65V1B hard ware can be divided into the following sections:

 Refer to the block diagram of Fig 1
1. Clock
2. Reset
3. CPU & buffers
4. Address decoding
5. Read/write logic
6. Memory
7. I/O and H-Buss
8. Eprom monitor.

.

µCEL TM Copyright c 1992 – JComm LAB 10

10

Figure 1 SBC Block Diagram

Experimenting With Embedded ControlControl

General Observations
CPU Clock

Synchronizes the entire system
Baudrate Clock

Synchronizes the uart (RS232).
Reset

Starts system at a predictable point
CPU

Directs the reading and writing of memory and I/O in sync with the clock.
Buffers

Allow more TTL input lines to be driven by the 65C02 CPU.
Address Decoding

Provides the mechanism for selecting memory and I/O at the proper time.
Read/write Logic

Sets the I/O data direction and proper read/write timing for the static ram.
Memory

Provides a medium to store programs and data.
I/O

A means by which you can communicate with the "outside world"
H-Buss

Provides a convenient mechanical interface with the SBC65V1B module and your project.

Eprom Monitor

Contains a program that is run every time you turn on power or press the reset button. This
monitor also provides the mechanism for some elementary troubleshooting and also allows you
to install your own program that will run after reset.
Notice that devices such as ram, EPROM, get most address and data signals and a few control
signals. Other devices such as buffers and I/O get smaller combinations of address, data, and
control signals.
Also notice that most of the timing is "built-in" to the address decoding. In other words, you
won't get data from a device unless it is selected. You won't select a device unless the program
you write requests that device by providing the instructions to do so.
Also notice that memory is connected to the unbuffered CPU address and data lines, I/O to the
buffered address and data lines.

µCEL TM Copyright c 1992 – JComm LAB 11

11

Experimenting With Embedded ControlControl

Chapter 4

Clock Circuitry
...

This chapter will discuss the clock circuitry.

CLOCK
The 65C02 microprocessor, which will be referred to as the CPU (Central Processing Unit),

requires a clock signal.
This clock signal is used to synchronize or pace all the operations of the CPU and its I/O.

The 1 MHz clock Fig 2. is buffered by the 74LS14 inverter, U1f and presented to pin 37 of the
CPU. The CPU in turn, outputs the clock as phase 1 and phase 2 on U12 pin 3 and pin 39
respectively.

Phase 2 is labeled CLK2. CLK2 is an important signal because all input and output
operations of the CPU are referenced to this signal.

The SN2661 uart chip also requires a clock signal. Although a 5.068 MHz frequency is
used to provide the uart clock, a 5MHz clock oscillator seems to work just as well.

Using Other Clock Speeds
There are 65C02 parts that can operate at a clock rate of up to 8 MHz. The SBC65V1B

was designed to operate at 1 MHz. The firmware timing routines built into the µCEL monitor
depend on a 1MHz clock, although you might get twice the resolution at 2MHz.

It is possible to experiment with faster clock rates, but remember that you may have to
'tweek' the monitor's timing routines. This can be accomplished by using a frequency counter
hooked to a toggled I/O bit. Use this bit to determine the accuracy of your firmware loops. You can
achieve the desired accuracy by inserting NOPs and changing the value of the loop constants.

Also, the manufacturer makes no warranty on units operated at higher frequencies.

µCEL TM Copyright c 1992 – JComm LAB 12

12

Experimenting With Embedded ControlControl

If you experiment in this direction, here are a few more things to look out for:
1) Make sure the access times of your EPROM and RAM are fast enough. At 8 MHz the

CPU cycle time is only 125 nSec and your access time is less than that!
2) You may have to use faster glue logic, such as 74F138's, to get the con

troller to operate properly.
3) Make sure you test your "new" board over the range of temperature that it will be used.

As indicated elswhere, DO NOT use the SBC65V1B controller for anything that could possibly
endanger life or limb! It is very unwise to depend on a computer of any kind for your ultimate
safety! A better idea is to create a margin of safety that was not there before you entered the
picture.

Always consider what would happen when something goes wrong (it will). Would you
inadvertently get poked, pushed, smashed, prodded or hurt in any way?

Have fun, pay attention, and be responsible and accountable for what you are doing --
good design enhances life! (off my soapbox)

µCEL TM Copyright c 1992 – JComm LAB 13

13

Experimenting With Embedded ControlControl

Chapter 5

Reset
...

There are two devices on the SBC65V1B that need to start from a predictable, repeatable

and known place. These devices are the CPU and the uart. The reset circuit is shown in Figure 3.

When power is first applied, or when reset button S1 (or optional extern a
LO level at the input of the TTL Schmidt inverter. When the switch is released, C1 will begin to
charge through R1. The R1-C1 time constant determines how long a "1" or HI will be present at
the output of U1c, and a "0" at the output of U1d. These signals reset the uart and the CPU
respectively. When C1 has charged to approximately 2.0 V, the input to the inverter will "see" a
"1," and the outputs U1c and U1d will revert to their resting states, "0" and "1."

When Reset.H asserts, it initializes the state machine inside the 2651 uart chip.
Reset.L initiates the CPU's starting point. You may have observed your personal computer

going into "Na-Na-NooNoo Land" for no apparent reason. Depressing the reset button gets the
CPU back to a point where it can "start over." Reset, signals the CPU to grab a special address
out of the EPROM monitor and begin executing the program pointed to by that address. Special
addresses such as these are called vectors and will now be discussed in more detail.

µCEL TM Copyright c 1992 – JComm LAB 14

14

Experimenting With Embedded ControlControl

Vectors
A vector is a fixed location in the memory map of the 65C02 processor that the CPU

accesses under any of the following conditions:
1) Reset button is pushed or power is turned on.
2) A non-maskable hardware interrupt (NMI) is asserted.
3) A maskable hardware interrupt (IRQ) is asserted.
4) A non-maskable software interrupt (SWI) is asserted.

Each type of vector occupies 2 bytes of the memory map, and are used to contain the
address of the routine that you want to execute when any of these conditions are present. IRQ
and SWI share the same vector. Only the reset vector will be discussed at this time.

Sequence:

1) Reset button is pushed.
2) CPU loads the 2 bytes at the vector locations 0FFFA and 0FFFB into its program counter.
3) CPU jumps to the routine pointed to by the vector and begins executing the code found there.

The XaMonV4B monitor vectors, point to locations in RAM. These RAM
locations are initialized on power-up and point to reset and interrupt routines located within the
monitor.

You can install your own vectors, making them point to your own routines in RAM for all
interrupts. If you want to change the EPROM vectors, you must do so by burning a new monitor
EPROM with those new vectors.

µCEL TM Copyright c 1992 – JComm LAB 15

15

Experimenting With Embedded ControlControl

Chapter 6

CPU and Buffers
...

Each output pin on the 65C02 CPU has the capacity to drive only one TTL unit load. That

means you can drive the inputs of one TTL or approximately two TTL-LS gates. Try to drive more
loads than the CPU can handle, and you have an erratic or non-operating 65C02.

We buffer the address and data lines because we will be using them for the I/O interface.
The address lines are buffered using U9 and U10. The enable lines to these 74LS244's are tied
LO, hence the buffered address line signals are always present to the H-Buss interface J12 and
J13.

U14 is a 74LS245 used to buffer the CPU's bi-directional data lines. R.L/W is used to
control U14's direction line. When the direction signal is LO, data is read from the interface bus
into the CPU. When the direction line is HI, data is written from the CPU out to the bus. Notice
U14, pin 19 of Figure 4, labeled IODataEnable.L. Bus data is enabled (turned on) ONLY when
this signal is asserted LO. This signal is low during I/O operations only. In Chapter 7 you will learn
how IODataEnable.L is created.

When you design your own interface, you will want to ensure that you don't put interface
data onto the bus at the wrong time. For example, two interfaces trying to put data onto the bus at
the same time would create a jamming condition called bus contention. Bus contention locks up
the CPU and stops execution of the program. If your CPU I/O module will not boot when your
interface is plugged in, this may be your problem.

For simple experiments, you can avoid data bus contention by using the SBC65V1B's
ready-to-use I/O select signals to drive your interface.

Another potential source of trouble is exceeding the drive limit or fanout of the data or
address buffers. Consult the electrical characteristics table in your TTL data book (IIH and IIL) for
the IC's you are planning to use.

The built-in address buffers can handle from 10 to 20 unit loads of their own series (such
as 'LS). This means you can use an H-Buss buffered address line to drive up to 20 LS inputs on
your interface. If you use some other logic family for your interface, be sure you have enough
buffering to handle the loads encountered. For example, a 74LS00 nand gate input consumes
about -.4 mA of current while the signal driving that input is low.

On the other hand, a 74S00 input consumes -2 mA, or about five times as much input
current as an 'LS00 input!
 Let's calculate.

20 74LS00 input loads @ -.4 mA ea = -8 mA.
A 74LS00 can provide up to 8 mA output.
A 74S00 input requires -2 mA.
Therefore a 74LS00 could only drive 4 74S00 inputs!

Fanout = -8mA/-2mA = 4.

µCEL TM Copyright c 1992 – JComm LAB 16

16

Experimenting With Embedded ControlControl

Figure 4 CPU and Address Buffering

µCEL TM Copyright c 1992 – JComm LAB 17

17

Experimenting With Embedded ControlControl

Chapter 7

Address Decoding
...

Address decoding is the process of intercepting the address line signals generated by the

CPU and using them to create control signals that enable memory or I/O devices. You may be
asking yourself "what causes the 65C02 CPU to generate an address on these lines?" Good
question! Actually, the CPU will present an address (generate signals) on its address pins each
time it executes an instruction of a program. This can be a program in the EPROM (firmware), or
a program you have downloaded into ram (ramware).We will discuss programming in more detail
at a later time.

The 65C02 CPU has the capability of addressing 65,536Z different memory locations.
Each of these locations has an address, just like each house in your neighborhood has an
address. Instead of a house number, we represent each memory location with a 16 bit address,
whose signal lines are labeled A0-A15. These 16 bits can also be represented by a four hex digit
number in the range 0000H to FFFFH.

For a description of hex arithmetic see Radio Electronics May 1981 pg 46 and Aug 1984
pg 54.

The SBC65V1B controller uses memory-mapped I/O. This means you can locate input
and/or output anywhere from location 0, to location 65,529Z (remember, in this text the "Z" suffix
represents a decimal number). The last 6 locations of the memory map are used for vectors.
Notice the vertical rectangular column of Figure 5. This memory map (sometimes referred to as
an address map) is used to graphically represent the partitioning of RAM, I/O and EPROM in the
CPU's address space.

Hexadecimal numbers will be used to describe addresses that the CPU can reference
(access).

Note that location 0000H is at the bottom of the map and location FFFFH is at the top.

"Gotcha:" some data books represent the low-address portion of the address map at the top.
This format is probably used to mimic a printed program listing .

The entire map consists of FFH (256Z) pages, each page containing FFH (256Z) locations.
256 X 256 = 65536, or 0 to 65535.

µCEL TM Copyright c 1992 – JComm LAB 18

18

Experimenting With Embedded ControlControl

Memory Map

Please refer to the memory map in Figure. 5. Every 256 bytes of system memory is known
as a page.

The first chunk of 256Z locations is called page 0. The designers of the 65C02 created a
special way for the CPU to access up to 128 16-bit registers, the zero-page addressing mode.

The next page, page 1, is also important because of its connection to the hardware. This
page is used by the CPU for a stack. A stack is a mechanism that allows the CPU to use part of
the sbc's memory as if it were part of the CPU itself. You will come to appreciate the stack when
you get into programming.

1) Part of page 2 is used to hold system monitor variables and pointers.
2) All but the first 32 bytes of Page 3 are open for use as buffer space.
3) I/O (Input/output) for the SBC65V1B is located on page 4.
4) Program or data memory (RAM) begins at Page 5 and continues to location 7FFFH.
5) Eprom starts at location 8000H and continues to the top of the memory map FFFFH.

Another way of looking at this map is 32,768Z locations of RAM memory with Page 4
"stolen" or "sacrificed" for I/O which is not used to hold programs. What remains is 32,768Z
locations used for EPROM memory.

We have almost half the memory space used for RAM and the other half as EPROM. Now
we will now discuss the actual address decoder design.

µCEL TM Copyright c 1992 – JComm LAB 19

19

Figure 5 System Memory Map

Experimenting With Embedded ControlControl

Table 1 Address Table

µCEL TM Copyright c 1992 – JComm LAB 20

20

Experimenting With Embedded ControlControl

Decoder Design
Please study Table 1. Notice that each address line is actually a signal that can be either

HI or LO. These binary values are used for the inputs of the address decoding circuitry in Figure
6. You can statically test an address decoder circuit without a CPU, by presenting Vcc and ground
(HI or LO) to the appropriate pins of your design!

Step 1 of this address decoder design process is to decide where RAM, EPROM, and I/O
are to reside in the CPU's memory map. These devices could be placed anywhere within the
map, but there are SOME CPU requirements to be satisfied: Again, page 0 and page 1 need to
be in RAM. The top 6 locations of Page # FF are used for reset and interrupt VECTORS and
should reside in EPROM.

The memory map of Figure 5 represents the memory layout we will design.
Looking at this memory map we can get a picture of what we want our decoding hardware

to do. We want to create 3 control signals. Only one of the following signals will be asserted per
CPU instruction.

(1) will select (turn on) the RAM when the CPU executes instructions accessing addresses in the
range 0000-03FFH and 0500-7FFFH.

(2) will select the EPROM when the CPU references the 8000-FFFFH range.
(3) will simultaneously select the Input/Output circuits when in the address range of 0400-04FFH
and inhibit (turn off) the RAM and EPROM.

For example, an instruction to load the CPU's accumulator at location 1000H "LDA 1000"
would do the following:

1) The CPU would form the address 1000H on its address lines A0-
A15.

2) These address lines are connected to the address decoding
circuitry, generating a memory select control signal.

3) This signal would cause the RAM to be selected, hence only RAM
program/data would be available to the CPU during that particular
instruction cycle.

Summarizing by example:
LDA 0500 instruction sequence would activate the RAM,
LDA 8000 would activate the EPROM,
LDA 0400 would activate the I/O section and simultaneously de-activate the RAM and the
EPROM.

Step 2 envolves visualizing the address bits A0-A15 (signal lines). Referring to Table 1,
note that the most significant bit (MSB), A15 is on the left, and A0 (LSB) is on the right. In this way
we can represent the address in both Hex and Binary. Since we are dealing with a RANGE of
addresses, let's start by representing the first and last address of each range.

Step 3, we make observations about our address ranges, and use the bit levels (HI or LO)
present at each address line in those ranges to generate the select signals we want. Figure 6
shows the schematic of the SBC65V1B decode circuitry. First we will focus on the control signals
for the RAM and EPROM, then the signals for the I/O circuits.

µCEL TM Copyright c 1992 – JComm LAB 21

21

Experimenting With Embedded ControlControl

Here are some observations that can be made from Table 1 above:
A15 is always LO ("0") when RAM is being referenced.

 A15 is always HI ("1") when EPROM is being referenced.
A8-A15 do not change when I/O is being referenced.

Figure 6 Decoding CPU Addresses

If we didn't have any I/O, our decoding task would be easy. We'd only use A15 to control
the RAM's chip select line, and use A15 (inverted) to control the EPROM's select line.

A controller without I/O would be boring, so we modified the "A15" idea to include a
provision for disabling both RAM and EPROM during I/O operations. U15 and U13 are used to
intercept the upper 8 (A8-A15) address lines from the CPU and create a SBCIOSel.L signal. This
signal is buffered by U15d AND gate wired as an inverter. The LED will light any time the I/O
'chunk' of memory space is accessed. This will provide us with an indication of when our program
is accessing I/O, and let us know if our CPU is running.

µCEL TM Copyright c 1992 – JComm LAB 22

22

Experimenting With Embedded ControlControl

We can use SBCIOSel.L to do two things:
1. We can use this signal to inhibit RAM and EPROM when I/O is selected.

We accomplish this using U3a, U2a and U2b. The two inputs to U3a are
normally HI. Any access made to either internal or external I/O will cause
the output of U3a to go LO. This signal is named IODataEnbl.L. This will
force U2b and the EPROM from being selected.

IODataEnbl.L is also used by the I/O data buffer U14 to enable data between the CPU and
the I/O circuitry. No data goes to or from your interface without this signal.

The U3a pin2 input labeled ExtIOSel.L can be a nice feature. This input allows you to
disable RAM and EPROM with a signal from YOUR interface. So if you don't like the memory map
on the SBC65V1B , you can layout YOUR OWN! You do this by AND'ing the select lines from
your interface, (yes, from your own decoding circuitry) and presenting the resulting signal to
ExtIOSel.L. A typical use for this feature is to relocate I/O to a different part of the map, for
example I/O to C000.

` 2. We can sub-divide the address lines within the I/O range 0400H to
04FFH to provide smaller I/O 'chunks' that we will later use to control different parts
of the SBC65V1B controller. We use the 74LS138 decoder chips to do this. The
'LS138 has 6 inputs and 8 outputs. 3 of the inputs are called enable lines, and the
other 3 inputs are select lines. The signal at pins 4 and 5 have to be asserted LO
and pin 6 asserted HI in order for the chip's output to be enabled (on=asserted
LO). When the chip is enabled, the signals at pins 1,2 & 3 deter
mine which output will be on. If 000 is presented to pins 1,2 & 3 , output Y0 will be
asserted LO. A 111 presented to those same lines will cause output Y7 to be
asserted LO.

The chip U4 is unique in that we use our SBCIOSel.L control signal and the system clock
to gate this LS138 on. This insures that data from your interface circuits is presented to the CPU
ONLY when the CPU is ready for your interface's data.

In summary, the upper 8 address lines give us our 'yes-it-is-I/O' coarse select. That
address range is divided into 4 chunks of 64Z addresses. Three of these chunks are available to
be used for your interface circuits. The next stage divides the remaining chunk of 64Z into 4
chunks of 16Z, and the last stage takes one of the chunks of 16Z and further divides that into 8
chunks of 2, which are available to you.

You may be wondering why these select lines are divided the way they are. For example,
the Uart serial chip has several registers that we will want to access. If we were planning on
having no other I/O, we could use the I/OSelect.L signal and our decoding chore would be
complete. No fun!! We would be 'wasting' too much of the I/O space. So instead we use a 1 X
16Z select line. Therefore we have sixteen addresses to use to access the registers
within the uart.

Remember, ROM or RAM is selected when there is no I/O being accessed, as determined
by address line A15.

Another way to envision these locations is to compare them to a post office. Imagine a post
office with 65,529 post office boxes numbered 0 to 65529. The post office box number would be
the address and the contents of that box would be the data (the mail).

µCEL TM Copyright c 1992 – JComm LAB 23

23

Experimenting With Embedded ControlControl

Chapter 8

Read Write Logic
...

There are two fundamental CPU operations, reading and writing.

 The CPU is either reading or writing data or reading an instruction. Please refer to Figure 7.

Figure 7 Read/Write Logic

When the CPU executes a read instruction like

LDA 7000

the signal R/W.L goes HI, indicating a 'read' instruction. CPU instructions such as LDX, LDY and
PLA all generate a RD.H signal at U3c, pin 8. When the CPU executes a write instruction like

STA 7000

 'write' instruction. CPU instructions such as STX, STY and PHA all generate a WR.L signal at
U2d, pin 11.

It may serve you to recognize that read and write is relative to your reference point. For this
discussion, the reference point is the CPU.

µCEL TM Copyright c 1992 – JComm LAB 24

24

Experimenting With Embedded ControlControl

A read means instructions or data goes into the CPU and a write means that data goes
OUT from the CPU. Later we will describe the details of the I/O hardware when we look at the
software that drives the hardware, hence the term, software driver.

The R/W.L signal coming from the CPU U12, pin 34 is buffered by an AND gate, U3d. The
output of U3d pin 11 is also AND'ed with CLK2 from the CPU pin 39 at U3c to create a read
control signal, RD.H at the output of U3c, pin 8. Buffered R/W.L is inverted by U2c, and presented
as an input to U2d. This signal AND'ed with CLK2 creates a WR.L signal used by the static RAM
during its write operations.

BR/W.L is available at the H-Buss J12 pin 16 as is R.L/W on J13 pin 25.

R.L/W is used by the uart U18, pin 13 and for data direction control at U14 pin 1.

µCEL TM Copyright c 1992 – JComm LAB 25

25

Experimenting With Embedded ControlControl

Chapter 9

Memory
...

The memory interface was designed so that you could select from many sizes of static RAM

and EPROM. There are four jumpers for the RAM, and six for the EPROM. The table above each
memory component describes how the jumpers are set for different types of memory. 'O' stands
for open (no jumper) 'S' for shorted (jumper present).
For example, Let's say we want to use an 8K X 8 static RAM; a 6264. Reading from the chart
below (Figure 8) you can see that J4 and J11 get a jumper and J5 and J10 do not. Jumpering the
EPROM is similar, only there are more sizes of memory to select from.

Jumpers J2 and J3 are only used with the 64K X 8 EPROM as a bank select. Shortly we
will show you how you can connect one of the output bits from the uart to control what 32K bank
you use.

If you do not have any of the plastic block-style jumpers, you can simply wire wrap the
header pins together to make the short. Leave them alone for the open.

Bank Selecting the Eprom
Bank selection makes it possible to use a 64K X 8 Eprom for U8. The SBC65V1B can only

access 32K of Eprom at a time. Therefore, to use a 64K Eprom we must divide it into two 32K X 8
chunks.

Let me remind you that your CPU may stop dead in its tracks if you fail to initialize all the
key variables in your program, or you call a monitor routine before having first copied the monitor
into each 32K portion of the EPROM. What I'm saying is that using bank switching in order to
have a very long program is possible, but takes some thought.

A simpler approach is to consider the low 32K as "application 1" and the upper 32K as
"application 2."

First copy the monitor into F1DE to FFFF of the Eprom, using an Eprom burner . Don't
forget to include the 6 bytes of interrupt vectors at FFFA-FFFF.

Next, copy the monitor's object code again, at Eprom locations 7000 to 7FFF. The 6
interrupt vectors go into locations 7FFA-7FFF.

Now by tying U18 pin 23's signal (RTS) PN4 to memory jumper J1, PN1 with a wire wrap
wire, you can use the Monitor routines' SetRTSBitLo and SetRTSBitHi to switch between
applications via SOFTWARE (actually your firmware or ramware)!

Maybe you can think of some clever new use for this feature.

µCEL TM Copyright c 1992 – JComm LAB 26

26

Experimenting With Embedded ControlControl

Figure 8 Ram and EPROM Bank Selection

µCEL TM Copyright c 1992 – JComm LAB 27

27

Experimenting With Embedded ControlControl

Chapter 10

Input/Output
...

The µCEL SBC65V1B comes with two types of Input/Output (I/O), digital and serial.

Digital I/O
There are 16 bits of digital I/O, eight bits of input and eight bits of output. Each of these I/O

bits has an unique address so that your source code can be more readable. For example, you
could label an input bit TableLimitSwitch1 or an output bit could be labeled StepperMotorOff. The
capacitance meter interface included in this documentation has an example of I/O bit utilization.

Refer to Fig 9. The 8 bits of input are provided by U16, an 74LS251. Each of the input bits
is pulled-up HI by RN2. You address these inputs 0420 for bit 0 and 0427 for bit 8. Notice that the
data bit goes to BD7. You can use the following sequence of instructions to read bit 0:

CONSTant section

IgnitionSwitch ADR 0420.

CODE SECTION

LDA IgnitionSwitch

BMI testOne

BPL testTwo .

The 8 output bits are provided by U19, an 74LS259 addressable latch. If you want more
driving current, a Signetics NE5090 can sink up to 150 ma per bit. This is sufficient current to
drive a small relay.

There are two address ranges for this device. To turn bits 0-7 off, use 0410-0417. To turn
bits on, use 0418-041F. Notice that your program can use offsets:
CONSTant section

BitOn ADR 0410

BitOff ADR 0418

CODE SECTION

STA BitOn+1 // comment turn bit 1 on

STA BitOff+7 // turn bit 7 off

A reference to 0406 or 0407 will clear all the outputs to a '0'.

µCEL TM Copyright c 1992 – JComm LAB 28

28

Figure 9 Digital I/O

Experimenting With Embedded ControlControl

Serial I/O
Serial communication is handled by the 2651 uart chip U18 and the MAX232 (see Figure

10). The MAX232 U20, is a RS232 buffer/driver chip that uses a charge pump to generate the
+/-10V RS232 levels. Consequently, the only power source needed is +5V. Hardware
handshaking bits are available for you, but are not yet used by JTerm, the terminal software.

There is one general purpose input bit on the uart which is used to provide a self-test
feature on the SBC65V1B. This bit is connected to J15. See Figure 11.

When the jumper J15 is shorted, the SBC will run a test program upon being reset. If the
jumper is not present, the SBC will run the monitor program.

A diagram of the IBM serial connections are also provided for you in Figure 10. Notice that
the IBM pin outs for both the 9 pin and 25 pin "D" connectors have been included.

Figure 10 Serial I/O
J14 is present so that you can write a serial interrupt routine, using the uart's interrupt pin.

When you connect J14 (short it) you tie the uart's interrupt U18 pin 14 to the maskable software
interrupt (IRQ) pin 4 of the CPU.

After you have learned to write your own programs, it will be possible to burn an EPROM
containing your program. You will need an EPROM burner. Your program can replace the test
program. All you will have to do to run your program (after you burn it into EPROM) is to turn on
power! More will be said about this in Chapter 12.

*There are some excellent books on serial communications. The details of which are out of
the scope of this manual. Go to your local college library for more details on this topic. The 'nitty-
gritty' of the 2651 uart will be described in a future interface note.

The routines for initializing, reading and writing to the uart are provided in the monitor
XaMonV4B described in Chapter 12 and listed in Chapter 13, lines 449-517 and 544-559.

µCEL TM Copyright c 1992 – JComm LAB 29

29

Experimenting With Embedded ControlControl

H-Buss
It's alot more fun when a single board computer provides some form of “expansion”. This

allows you to design your own experiments and plug them onto the SBC65V1B cpu I/O module.
This feature is facilitated by the H-Buss (Figure 11), using "3M"-style plug strips. There are 72
positions on this bus, 36 per side. You can achieve different mechanical configurations depending
on the size and polarity of the header strips you choose (see Figure 14). Regardless of the
configuration you choose, the end result will be a nice tight rectangular 'block' of circuitry.

Another option is to lay a common plugboard breadboard on top of the SBC module, and
make interface connections using #22 solid (.025 dia) hook up wire. You can obtain signals from
the H-Buss by merely plugging a wire for each signal desired, into J12 or J13.

An example of this technique is provided with the capacitance meter interface, included
later in this manual.

Another I/O option available to you is the 20 pin header J16. You can use this header to get
to the SBC's I/O resources. This header allows you to access Vcc and Gnd, the 16 bits of digital I/
O, and serial transmit and receive. This makes it easier to connect to external relays, switches,
etc.

This header can be basis for an expansion board series for the SBC65V1B module.
A lot more can be learned about I/O by using it! The application notes included with this

manual should help you.

µCEL TM Copyright c 1992 – JComm LAB 30

30

Figure 11 H-Buss

Experimenting With Embedded ControlControl

Chapter 11

Assembly and Test
...

If you have a rough time soldering or you have not undertaken a project of this scale, you may

want to obtain the complete and socketed PC board offered on page . If you solder your own
board, get some Kester 2331 water soluble flux and Kester organic solder QQ-S-571 SN63PB37
(66 331). Another good alternative is the rosin-based Radio Shack part no. 64-009 solder.

After soldering, the 2331 flux residue comes off with warm tap water and a toothbrush. The
flux residue from rosin based Radio Shack solder does not.

An important note concerning the 2331 flux, it is both corrosive and conductive, so be sure
to wash both sides of the pcb, and do NOT use this flux system with phenolic-based pc boards or
breadboards. The flux will soak into the paper base and create some WEIRD problems with circuit
operation!

Sockets are highly recommended, especially for the first SBC you put together. All IC's on
the SBC65V1B prototype were socketed, except for the two clock oscillators. Once you have an
SBC running, the sockets provide a convenient means to test parts for later SBC projects.

Begin by soldering all the sockets. First, insert the socket onto the pcb. Then make sure
that you do a visual check of the socket pins on the solder side of the PCB, BEFORE you solder
the socket in. Insure that all socket pins are poking through the PCB and that you haven't
invariably "folded" a pin under the socket (on the component side of the PCB). A little care at this
stage of the project will save you alot of troubleshooting time later.

Next, install the push button switch, power connector and the headers. A special point
about serial connector DB1; you are using the 'solder cup' connector as a surface mounted
component. Carefully press the edge of the pcb between the two rows of pins on the connector,
lining the connector pins up with the solder pads on the pcb. For correct orientation, the top row
should have five pins (top or component side) and the bottom row should have four pins (on the
solder side). When soldering, give each pin just enough heat so that the solder 'wicks' up on each
side of each DB pin. If you do not want to use the 'D' connector, you may solder the wires from
your serial cable directly to the holes provided for each connection. Should you take this route, be
sure to make the appropriate connection for transmit, receive and ground, and also leave room
for the jumper wires JW1-JW5. The SBC's 'transmit' should be connected to the host computers
'receive' and vise-versa.

The LED and remaining passive components should be soldered next. The two tantalum
capacitors C1 and CD1, the LED, as well as the four electrolytics C20-C23 are polarity sensitive.
Use the '+' marks on the silkscreen legend as your guide. The arrow on the electrolytics usually
points to the '-' lead, so pay attention to what your doing! The 'flat' part of the LED denotes the
cathode. Save yourself some trouble by installing these components correctly! Using the lead
clippings from your capacitors, form three short jumpers to be used for JW2, JW3 and JW5. DO
NOT install JW1 or JW4. JW1 and JW4 are provided for the uart hardware handshaking signals.
They will not be used at this time (they may come in handy later). By making a 1/4" or so loop on
JW5, you can have a nice place to clip a logic lead or alligator clip. Use the '-' end of C20 for the
Vcc connection to your logic probe.

µCEL TM Copyright c 1992 – JComm LAB 31

31

Experimenting With Embedded ControlControl

Now install the H-Buss headers J12 and J13. You have several possibilities. here. You can
solder these connectors either from the component or solder sides. If you mount these
connectors on the solder side of the PCB (soldering on the component side), you can use the
SBC65V1B as a module that can be plugged onto another printed circuit board. If you mount the
connectors on the component side (soldering on the solder side), you can rest a 3M-type
plugboard on top of the SBC for the breadboard experiment that will follow.

Once the soldering is complete, and the pcb is washed and dried (if you used the 2331 flux
system) you can now plug the IC's into their sockets. There are a couple of "gotchas" to look out
for. Notice that pin 1 for each IC does not face in the same direction or orientation. The main
culprits are the RAM and EPROM. There are two clues you can use to insure proper insertion:

1) the 'U-hump' on the silkscreen and
2) the square pc board pad on each IC denoting pin one.

The IC manufacturers either put a 'notch' on the plastic at the pin-one-end of the IC or a
'dot' next to pin one. Also, if you are using the 2K RAM or EPROM, always plug the IC such that
the ground (pin 12) is connected. The programming jumpers J1-J11 take care of the remaining
connections. Study the pc board layout silkscreen (Found in the Appendix) if you have any
doubts.

Cables
After your SBC is completed you still have some work to do. You need to buy or make two

cables. One supplies Vcc and Gnd and the other connects the serial communication port to talk to
your PC or dumb-terminal. A standard 9-pin monitor extention cable works well for the serial
connection to a laptop and some AT's. If your connectors do not match up, it may be possible to
buy cables with the required ends and use gender changers to finish the fit. The cable needs to
have a male connection on SBC end, and a female connection on the PC end. If you make your
own, you need some cable that has at least 3 conductors. Five conductors are required if you also
want to include the uart handshaking signals. The power cable is a little tricker. It takes some
patience and care to successfully crimp the Waldom terminal pins to the wire, and then insert the
pin into the corresponding terminal housing. The 'lip' of the pin fits into the slot on the housing.
Remember to watch your polarity's so that Vcc and Ground are not crossed. Bad connections
makes fried chips!

Check Out:
There are a few things to check out before powering up your SBC. Use an ohmeter or a

low-power continuity checker to insure there is no short between Vcc and ground.
Next, insure that all the polarity sensitive components have been installed correctly. Check

your power connector to insure that Vcc and ground are headed where they belong. +5V and
GND is marked on the silkscreen of the PC board on the component side. Look at each IC and
make sure pin 1 is oriented in the socket correctly.

One common problem is created by bending an IC pin upon insertion into the socket. This
bent 'horses leg' usually will either poke out of the socket edge or 'wing' out. At other times you
may have to lift the IC slightly with a screwdriver blade in order to spot the offending bent pin. The
last step is to install a shorting jumper on J15. J15 signals the SBC to run a test program upon
power-up.

Once the initial visual check out is complete, you may power up the SBC. If nothing
smokes, that's a good sign! If the SBC is operating properly, the LED will flash once every two
second or so .

µCEL TM Copyright c 1992 – JComm LAB 32

32

Experimenting With Embedded ControlControl

Operation
Hook up the serial cable. The female end of the cable will plug into your PC's 9 pin serial

connector, the male end into the SBC65BV1B female connector. Power up the SBC and run
JTerm, the terminal software on the PC. If you have J15 shorted, you should see a '1' printing to
the PC's screen with every flash of the SBC's LED.

Troubleshooting
A voltmeter and a logic probe are indispensable for fault-finding. Most of the suggested

checks involve the use of the logic probe. Read your logic probe manual for suggestions on how
to enterpret what you are seeing on the logic probe's LEDS.

First check the power and ground connections for all chips with a voltmeter (+/-.5V.)
Check every pin for 5v and ground using a logic probe.
Press the reset button S1 and check the reset signals for correct action. Pin 40 of the CPU

is normally Hi, and goes Lo during reset. P 21 of uart U18 is normally Lo and goes Hi during reset.
Check the clock signals. Insure clock is present everywhere it is supposed to be, and that it

is the correct frequency. If you do not have a scope or frequency counter, you will just have to
trust what is "on the can."

Check the enabling signals on the decoding circuitry and buffers for proper polarity.
Check the R/W.L lines for activity.
Check the address and data line for activity. If no activity is present with a given signal,

depress the reset button while monitoring the "dead" signal. If your 'pulse' LED on the logic probe
doesn't at least blink, that signal line has a problem.

If the SBC is running a program (even a bad one), the address and data lines will be very
busy. You can easily determine if each signal of the address and data buffers are correct. For
example, if you are looking at signal line A0, if the input-side of the buffer causes your probe's
pulse LED to blink, but the output of the buffer does not, you have a problem with the buffer. If
there is no activity on any of the lines you may have to go to a power-off netlist ohm check.

With the CPU and memory removed, and power off, apply a logic '1' to each of the 16
address bits at the CPU socket. Check to see that only the indicated bit is asserted HI by
monitoring any convenient point at another socket with the same signal (like A0). Now use a logic
'0' and perform the same test. This technique works equally well with the data lines. If you make
more than one of these SBC's, you can use the extra one to drive each signal of the device under
test (DUT) under program control. You can make your own automated test equipment (ATE)!
When you learn how to interface your SBC65V1B this idea should become more apparent to you.

Using the Netlist for Trouble Shooting
A net list containing every connection on the SBC65V1B can be found at the end of this

chapter.
The signal names are itemized on the left of the page, and the connections follow to the

right.
This list can be handy when you suspect a particular line has gone awry. If you have wire

wrapped your SBC, you can use the netlist to check your connections. Otherwise the net list
makes a convenient way to trace signals on the SBC with your logic probe.

µCEL TM Copyright c 1992 – JComm LAB 33

33

Experimenting With Embedded ControlControl

Common Errors
Here is a partial list of some of the things that can go wrong:

solder blob shorting two or more pins
incorrect orientation of IC in socket
polarity-sensitive part installed incorrectly (such as the LED)
socket pin bent before socket is soldered onto pc board, thus creating an open between the
IC and the pc board
IC pin bent while inserting into socket
wrong IC installed in a given socket location
electrically or electrostatically damaged IC
jumpers J1-J12 incorrectly programmed or missing
6502 used in place of a 65C02 (use only a 65C02)
CPU reset or interrupt vectors incorrectly burned into EPROM
clock oscillator wrong frequency
poor solder connection (usually cold)
wrong logic family of TTL part used (start with TTL-LS; once you have your SBC working, then
you can experiment with other families)

Hardware vs software implementations
You may have heard the terminology "implemented in hardware" or "implemented in

software." What this means is that there are many applications that can be realized by using
either hardware (electronics parts) or software (code).

For example, say you wanted to generate a pulse every second. A hardware
implementation might use a 555 timer wired as an astable multivibrator and 'tweaked' until it
outputs the desired pulse. A software implementation might consist of a software loop that calls a
subroutine named 'MilliSecDelay' 1000 times, then turns an output bit on, then off via software.

Yes, you still use some hardware (the output bit) but you've replaced all those temperature
sensitive and space consuming circuits with a few lines of a program. The decision as to which
approach or combination of approaches to use is up to you.

If you don't give yourself enough hardware on your interface project, the software might be
overly difficult to write, or your response time may be too slow. If you use more hardware, your
program may be easier to write (if you think ahead in terms of BOTH hardware & software), but
your project might cost more than it needs to, or take up too much room on your pc board.

Concerning cost of implementation; there is both a time and money cost to every circuit
you build. It is not wise to write a thousand lines of code in order to replace a single IC when you
are only building 1 or 2 pcbs. On the other hand, the picture changes when the numbers get into
the hundreds and thousands.

Make the best decision you can! You may find it fun to play with the extremes on this issue
with a few simple projects, and get a 'feel' for the versatility you can achieve by using both
hardware and software creativity.

Cross Assembler
By using the 65C02 instruction set and a lot of manual 'elbow grease,' it is possible to

hand -write a sequence of instructions to make your project "do something."
This can be useful in getting you down the learning curve, but a hand programmer's life

gets more difficult as the programs get longer.

µCEL TM Copyright c 1992 – JComm LAB 34

34

Experimenting With Embedded ControlControl

The assembler "JAsm" mentioned in Chapter 14 runs on IBM PC/AT compatibles. It
generates 6502/65C02 code. This code will not run on the PC (wrong processor) hence the term
Cross-assembler. The SBC65V1B's CPU uses instructions in the form of HEX codes that are one
to three bytes long.
For example, store the accumulator
 STA
 is HEX 85 in the page zero addressing mode.

Keeping track of all these codes can be a real pain, so instead we use the cross-assembler
to generate the codes. JAsm also allows you to define memory locations and subroutines by
giving them identifier and label names. The object code can be output in both binary and ascii file
formats. A more complete description of the use of this assembler can be found in Chapter 14.

If you are using a different controller/computer than the µCEL SBC65V1B, you can still
generate code for your target using the JAsm cross assembler, providing of course that the target
processor is a 6502 derivative.

IBM serial interface
The cross-assembler will work fine on an PC without a serial port, but you won't be able to

download your assembled code into the SBC65V1B using JTerm.
To enter a program using a dumb terminal, you will have to look up the 65C02 instruction

codes in the XaTestR listing, and then hand- enter the codes using the XaMonV4B monitor, and
hand-compute all relative jumps.

You can hand-compute relative jumps using the following:
 O = Offset (adjustment)
 D = Destination address
 PC= Program Counter
 Forward computation Example:
 F1F0 5A |Pop PHY

 F1F1 A4 E6 | LDY StackPointer

 F1F3 F0 04 | BEQ pSkip

 F1F5 C6 E6 | DEC StackPointer

 F1F7 A4 E6 | LDY StackPointer

 F1F9 B1 E4 |pskip LDA (StackAdr),Y

Calculations:
O = D - PC PC + 4

 F1F9 – F1F5 = 04 Therefore the BEQ instruction is F1F3 F0 04

Backward computation Example:
F2EF 20 E4 F2 |DelaySecs JSR Delay1Sec

F2F2 CA | DEX

F2F3 D0 FA | BNE DelaySecs

F2F5 60 | RTS

Calculations:
O = D+100H - PC

 (F2EF+100H) – F2F5 Therefore the BNE instruction is F2F3 D0 FA

To download a file into the SBC65V1B, you can either use the down load feature of JTerm,
the terminal program included with the assembler, or you can write your own downloader. The
protocol for the download is simple and mentioned in Chapter 15.

µCEL TM Copyright c 1992 – JComm LAB 35

35

Experimenting With Embedded ControlControl

Optimizing power consumption
It is possible to minimize power consumption by sorting through various IC chips and

determining how much current they are using. The simple adaptor in Figure 14 can be used to
accomplish this. The power hungry chips are the 2651 uart, the LS245, the LS244's, the LS138's
and the EPROM. For example, the 2651 uarts varied in current consumption from 45 to 85 ma. By
using a 74HCTLS245 instead of a 74LS245, you can reduce the current consumed by about 55
ma! Not all TTL families will work with this design.

A good approach is to get your board working using TTL-LS parts, and then begin
experimenting with HCTLS or other TTL family parts.

Why would you even be interested in current usage? There is probably no reason if you
are using a dc power supply that is plugged into the AC line. If you are running this board off of a
battery source (remember, go above 5.5 V max and you fry chips), then the less current you use,
the longer your nicads, fuel cell, etc. will last. A 4 AMP/HR battery will last you 20 hours or so at
200 mA/ hr, and only 4 hours if you are drawing 1 amp.

The author's prototype uses 315 mA, equating to about 12.7 hrs of battery use time using
heavy duty 'D' cell nicads. Future designs will use more CMOS parts, even though they are often
harder to get.

DISCLAIMER
The µCEL TM SBC65V1B controller was NOT designed to be used to control anything

involving life or limb. So please don't use it to control aunt Marta's kidney machine!
The space shuttle uses four computers! Three of them talk to each other and 'vote.' The

outcome of the vote determines the action taken. The fourth computer is used as a spare.
This redundancy is an acknowledgment of a nasty reality; a glitch in power or a faulty

instruction can send your program into some not-so-funny place and send a robot arm flying at
you--or fail to shut off a critical valve, etc.

Embedded control can be extremely useful, productive and safe...but you have to be
conscious and responsible for how you implement computers into your equipment or invention!
The life you save may be your OWN!

Limitations
Depending on your point of view, there are lots of interesting applications for this controller.

It may be your ticket to replacing that Apple II you have tied up doing some simple control task. I
wouldn't want to waste the SBC65V1B controller by doing Word processing, or any other task that
is best done by a general purpose computer.

There is no watch dog timer on the SBC65V1B. That means if your power glitches, or your
program goes off into "Na-Na-Noo-Noo Land," it will stay lost until you manually press the reset
button.

If a watchdog timer were present, it would generate a CPU reset pulse after a
predetermined time if your program did not send a pulse to reset the watchdog.

Mastery of the µCEL system should prepare you to tackle other development systems that
use different processors or higher-level languages. A partial listing of other companies offering
single board computers and development systems is given in the Appendix.

The µCEL can also be a great warm-up if you are planning to design your own system.
The following is available from JComm
SBC65V1B Printed Circuit Board with JTerm and JAsm (limited supply)

µCEL TM Copyright c 1992 – JComm LAB 36

36

Experimenting With Embedded ControlControl

Netlist
BA4 J12,32 U10,14

BA5 J12,33 U10,7

BA6 J12,34 U10,12

BA7 J12,35 U10,9

BA8 J13,29 U9,18

BA9 J13,30 U9,3

BA10 J13,31 U9,16

BA11 J13,32 U9,5

BA12 J13,33 U9,14

BA13 J13,34 U9,7

BA14 J13,35 U9,12

BA15 J13,36 U9,9

BD0 J12,13 U14,18 U18,27

BD1 J12,12 U14,17 U18,28

BD2 J12,11 U14,16 U18,1

BD3 J12,10 U14,15 U18,2

BD4 J12,9 U14,14 U18,5

BD5 J12,8 U14,13 U18,6

BD6 J12,7 U14,12 U18,7

BD7 J12,6 U14,11 U16,5 U18,8

BR/W.L J12,16 U2,9 U2,10 U3,9 U3,11

BRClk J13,5 U17,8 U18,20

CLK J12,36 U1,12 U4,6 U12,37

CLK1 J12,23 U8,22 U11,22 U12,3

CLK2 J12,19 U2,13 U3,10 U12,39

CTS.H JW4,1 U20,11

CTS.L J13,9 U18,17 U20,14

D0 U8,11 U11,11 U12,33 U14,2

D1 U8,12 U11,12 U12,32 U14,3

D2 U8,13 U11,13 U12,31 U14,4

D3 U8,15 U11,15 U12,30 U14,5

D4 U8,16 U11,16 U12,29 U14,6

D5 U8,17 U11,17 U12,28 U14,7

D6 U8,18 U11,18 U12,27 U14,8

D7 U8,19 U11,19 U12,26 U14,9

DTR.L U18,24 U20,13

DTROut.L J13,6 JW1,1 U20,12

DigitalGnd C1,4 C3,2 C4,2 C5,2 C6,2 C7,2 C8,2

 C9,2 C10,2 C11,2 C12,2 C14,2 C15,2 C16,2

 C18,2 C19,2 C21,1 CD1,2 J2,2 J12,15 J13,15

 J15,1 J16,1 JW5,1 P1,1 PJ1,2 S1,1 S2,2

 U1,7 U2,7 U3,7 U4,1 U4,8 U5,1 U5,8

 U6,8 U7,7 U8,14 U9,1 U9,10 U9,19 U10,1

 U10,10 U10,19 U11,14 U12,1 U12,21 U13,1

 U13,8 U14,10 U15,7 U16,8 U17,7 U18,4

 U18,16 U19,8 U20,15

ExtIOSel.L J13,28 RN1,5 U3,2

IN0 J12,5 J16,4 RN2,9 U16,4

IN1 J12,4 J16,11 RN2,5 U16,3

IN2 J12,3 J16,13 RN2,3 U16,2

µCEL TM Copyright c 1992 – JComm LAB 37

37

Experimenting With Embedded ControlControl

IN3 J12,2 J16,6 RN2,2 U16,1

IN4 J13,20 J16,8 RN2,4 U16,15

IN5 J13,23 J16,17 RN2,6 U16,14

IN6 J12,14 J16,10 RN2,7 U16,13

IN7 J12,1 J16,15 RN2,8 U16,12

IODataEnbl.L U2,1 U2,5 U3,3 U14,19

IRQ.L J12,22 J14,2 RN1,3 U12,4

NMI.L J12,21 RN1,4 U12,6

OUT0 J13,1 J16,16 U19,4

OUT1 J13,2 J16,18 U19,5

OUT2 J13,7 J16,5 U19,6

OUT3 J13,8 J16,12 U19,7

OUT4 J13,10 J16,14 U19,9

OUT5 J13,12 J16,7 U19,10

OUT6 J13,13 J16,9 U19,11

OUT7 J13,14 J16,3 U19,12

R.L/W J13,25 U2,8 U2,12 U14,1 U18,13

R/W.L J7,1 U3,12 U3,13 U12,34

RD.H J13,16 U3,8

RTS.L J13,11 PN4,1 U18,23

RamSelect.L U2,3 U11,20

Rcvr U18,3 U20,7

Ready J12,24 RN1,2 U12,2

Reset.H J13,26 U1,6 U1,9 U18,21

Reset.L J12,17 U1,8 U12,40

RomSelect.L U2,6 U8,20

RxRdy J14,1 U18,14

SBCIOSel.L U3,1 U4,4 U4,5 U13,15 U15,12

 U15,13

SO 12,18 RN1,6 U12,38

Sel4C0-4FF J12,25 U4,9

Sel40A-40B J13,19 U6,10

Sel40C-40D J13,21 U6,9

Sel40E-40F U6,7

Sel400-401 J13,24 U6,15

Sel402-403 J13,22 U6,14

Sel404-405 PN3,1 U6,13

Sel406-407 U6,12 U19,15

Sel408-409 J13,18 U6,11

Sel410-41F U5,13 U19,14

Sel420-42F U5,11 U16,7

Sel430-43F U5,9 U18,11

Sel440-47F J12,27 U4,13

Sel480-4BF 12,26 U4,11

SerialIn DB1,3 J13,4 J16,20 JW3,2

SerialOut J13,3 J16,19 JW2,1 U20,9

Sync.L J12,20 U12,7

Vcc C3,1 C4,1 C5,1 C6,1 C7,1 C8,1 C9,1 C10,1

 C11,1 C12,1 C14,1 C15,1 C16,1 C18,1 C19,1

 C20,2 CD1,1 D1,2 J3,2 J9,1 J10,1 J13,27

 J16,2 P1,2 PJ1,1 R1,2 R3,2

µCEL TM Copyright c 1992 – JComm LAB 38

38

Experimenting With Embedded ControlControl

 RN1,1 RN2,1 U1,14 U2,14 U3,14

 U4,16 U5,6 U5,16 U6,6 U6,16

 U7,14 U8,28 U9,20 U10,20 U11,28

 U12,8 U13,16 U14,20 U15,14 U16,16

 U17,14 U18,26 U19,16 U20,16

WR.L J5,1 J13,17 U2,11 U11,27

Xmt U18,19 U20,8

node01 U4,15 U5,4 U5,5

node02 U5,15 U6,4 U6,5

node03 U13,4 U15,6

node04 U13,5 U15,8

node05 D1,1 R4,2

node06 U1,2 U2,2

node07 U15,3 U15,4

node08 R4,1 U15,11

node09 U1,13 U7,8

node10 J6,2 J7,2 U8,23

node11 J1,1 J2,1 J3,1 U8,1

node12 J1,2 PN1,1

node13 J8,2 J9,2 U8,26

node14 J4,2 J5,2 U11,23

node15 J10,2 J11,2 U11,26

node16 M1,1 PN2,1

node17 R2,1 S1,4 S2,1

node18 C1,1 C1,2 C1,3 R1,1 R2,2

U1,5

node19 C22,1 U20,1

node20 C20,1 U20,2

node21 C22,2 U20,3

node22 C21,2 U20,6

node23 C23,1 U20,4

node24 C23,2 U20,5

node25 JW3,1 U20,10

node26 DB1,4 JW4,2

node27 DB1,6 JW1,2

node28 DB1,2 JW2,2

node29 DB1,5 JW5,2

node30 J15,2 R3,1 U18,22

µCEL TM Copyright c 1992 – JComm LAB 39

39

Experimenting With Embedded ControlControl

Connection by Reference Designator and Signal Names
C1 1 node18 2 node18 3 node18 4 DigitalGnd

C20 1 node20 2 VCC

C21 1 DigitalGnd 2 node22

C22 1 node19 2 node21

C23 1 node23 2 node24

CD1 1 Vcc 2 DigitalGnd

D1 1 node05 2 VCC

DB1 2 node28 3 SerialIn 4 node26 5 node29 6 node27

J1 1 node11 2 node12

J2 1 node11 2 DigitalGnd

J3 1 node11 2 VCC

J4 1 A11 2 node14

J5 1 WR.L 2 node14

J6 1 A11 2 node10

J7 1 R/W.L 2 node10

J8 1 A13 2 node13

J9 1 Vcc 2 node13

J10 1 Vcc 2 node15

J11 1 A13 2 node15

J12 1 IN7 2 IN3 3 IN2 4 IN1 5 IN0 6 BD7 7 BD68 BD5

 9 BD4 10 BD3 11 BD2 12 BD1 13 BD0 14 IN6 15 DigitalGnd

 16 BR/W.L 17 Reset.L 18 SO 19 CLK2 20 Sync.L

 21 NMI.L 22 IRQ.L 23 CLK1 24 Ready

 25 Sel4C0-4FF 26 Sel480-4BF 27 Sel440-47F 28 BA0

 29 BA1 30 BA2 31 BA3 32 BA4

 33 BA5 34 BA6 35 BA7 36 CLK

J13 1 OUT0 2 OUT1 3 SerialOut 4 SerialIn

 5 BRClk 6 DTROut.L 7 OUT2 8 OUT3

 9 CTS.L 10 OUT4 11 RTS.L 12 OUT5

 13 OUT6 14 OUT7 15 DigitalGnd 16 RD.H

 17 WR.L 18 Sel408-409 19 Sel40A-40B 20 IN4

 21 Sel40C-40D 22 Sel402-403 23 IN5

 24 Sel400-401 25 R.L/W 26 Reset.H

 27 Vcc 28 ExtIOSel.L 29 BA8

 30 BA9 31 BA10 32 BA11

 33 BA12 34 BA13 35 BA14 36 BA15

J14 1 RxRdy 2 IRQ.L

J15 1 DigitalGnd 2 node30

J16 1 DigitalGnd 2 VCC 3 OUT7 4 IN0 5 OUT2 6 IN3

 7 OUT5 8 IN4 9 OUT6 10 IN6 11 IN1 12 OUT3

 13 IN2 14 OUT4 15 IN7 16 OUT0 17 IN5 18 OUT1

 19 SerialOut 20 SerialIn

JW1 1 DTROut.L 2 node27

JW2 1 SerialOut 2 node28

JW3 1 node25 2 SerialIn

JW4 1 CTS.H 2 node26

JW5 1 DigitalGnd 2 node29

M1 1 node16 P1 1 DigitalGnd 2 Vcc PJ1 1 Vcc 2 DigitalGnd

µCEL TM Copyright c 1992 – JComm LAB 40

40

Experimenting With Embedded ControlControl

PN1 1 node1

PN2 1 node1

PN3 1 Sel404-40

PN4 1 RTS.L

R1 1 node18 2 Vcc

R2 1 node17 2 node1

R3 1 node30 2 VCC

R4 1 node08 2 node05

RN1 1 VCC 2 Ready 3 IRQ.L 4 NMI.L 5 ExtIOSel.L 6 SO

RN2 1 Vcc 2 IN3 3 IN2 4 IN4 5 IN1 6 IN5

 7 IN6 8 IN7 9 IN0

S1 1 DigitalGnd 4 node17

S2 1 node17 2 DigitalGnd

U1 1 A15 2 node06 5 node18 6 Reset.H 7 DigitalGnd

 8 Reset.L 9 Reset.H 12 CLK 13 node09

 14 VCC

U2 1 IODataEnbl.L 2 node06 3 RamSelect.L 4 A15

 5 IODataEnbl.L 6 RomSelect.L 7 DigitalGnd 8 R.L/W

 9 BR/W.L 10 BR/W.L 11 WR.L 12 R.L/W

 13 CLK2 14 VCC

U3 1 SBCIOSel.L 2 ExtIOSel.L 3 IODataEnbl.L 7 DigitalGnd

 8 RD.H 9 BR/W.L 10 CLK2 11 BR/W.L

 12 R/W.L 13 R/W.L 14 VCC

U4 1 DigitalGnd 2 A6 3 A7 4 SBCIOSel.L

 5 SBCIOSel.L 6 CLK 8 DigitalGnd 9 Sel4C0-4FF

 11 Sel480-4BF 13 Sel440-47F 15 node01 16 VCC

U5 1 DigitalGnd 2 A4 3 A5 4 node01

 5 node01 6 Vcc 8 DigitalGnd 9 Sel430-43F

 11 Sel420-42F 13 Sel410-41F 15 node02 16 VCC

U6 1 A1 2 A2 3 A3 4 node02

 5 node02 6 Vcc 7 Sel40E-40F 8 DigitalGnd

 9 Sel40C-40D 10 Sel40A-40B 11 Sel408-409 12 Sel406-407

 13 Sel404-405 14 Sel402-403 15 Sel400-401 16 VCC

U7 7 DigitalGnd 8 node09 14 VCC

U8 1 node11 2 A12 3 A7 4 A6

 5 A5 6 A4 7 A3 8 A2

 9 A1 10 A0 11 D0 12 D1

 13 D2 14 DigitalGnd 15 D3 16 D4

 17 D5 18 D6 19 D7 20 RomSelect.L

 21 A10 22 CLK1 23 node10 24 A9

 25 A8 26 node13 27 A14 28 VCC

U9 1 DigitalGnd 2 A8 3 BA9 4 A10

 5 BA11 6 A12 7 BA13 8 A14

 9 BA15 10 DigitalGnd 11 A15 12 BA14

 13 A13 14 BA12 15 A11 16 BA10

 17 A9 18 BA8 19 DigitalGnd 20 Vcc

U10 1 DigitalGnd 2 A0 3 BA1 4 A2

 5 BA3 6 A4 7 BA5 8 A6

 9 BA7 10 DigitalGnd 11 A7 12 BA6

 13 A5 14 BA4 15 A3 16 BA2

 17 A1 18 BA0 19 DigitalGnd 20 Vcc

µCEL TM Copyright c 1992 – JComm LAB 41

41

Experimenting With Embedded ControlControl

U11 1 A14 2 A12 3 A7 4 A6 5 A5

 6 A4 7 A3 8 A2 9 A1 10 A0

 11 D0 12 D1 13 D2 14 DigitalGnd

 15 D3 16 D4 17 D5 18 D6 18 D6

 19 D7 20 RamSelect.L 21 A10 22 CLK1

 23 node14 24 A9 25 A8 26 node15 27 WR.L 28 VCC

U12 1 DigitalGnd 2 Ready 3 CLK1 4 IRQ.L

 6 NMI.L 7 Sync.L 8 Vcc 9 A0

 10 A1 11 A2 12 A3 13 A4

 14 A5 15 A6 16 A7 17 A8

 18 A9 19 A10 20 A11 21 DigitalGnd

 22 A12 23 A13 24 A14 25 A15

 26 D7 27 D6 28 D5 29 D4

 30 D3 31 D2 32 D1 33 D0

 34 R/W.L 37 CLK 38 SO 39 CLK2

 40 Reset.L

U13 1 DigitalGnd 2 A8 3 A9 4 node03

 5 node04 6 A10 8 DigitalGnd 15 SBCIOSel.L

 16 Vcc

U14 1 R.L/W 2 D0 3 D1 4 D2

 5 D3 6 D4 7 D5 8 D6

 9 D7 10 DigitalGnd 11 BD7

 12 BD6 13 BD5 14 BD4

 15 BD3 16 BD2 17 BD1

 18 BD0 19 IODataEnbl.L 20 VCC

U15 1 A15 2 A14 3 node07

 4 node07 5 A13 6 node03

 7 DigitalGnd 8 node04 9 A12

 10 A11 11 node08 12 SBCIOSel.L

 13 SBCIOSel.L 14 VCC

U16 1 IN3 2 IN2 3 IN1

 4 IN0 5 BD7 7 Sel420-42F

 8 DigitalGnd 9 BA2 10 BA1

 11 BA0 12 IN7 13 IN6

 14 IN5 15 IN4 16 Vcc

U17 7 DigitalGnd 8 BRClk 14 VCC

U18 1 BD2 2 BD3 3 Rcvr 4 DigitalGnd

 5 BD4 6 BD5 7 BD6 8 BD7

 10 BA1 11 Sel430-43F 12 BA0 13 R.L/W

 14 RxRdy 16 DigitalGnd 17 CTS.L

 19 Xmt 20 BRClk 21 Reset.H 22 node30

 23 RTS.L 24 DTR.L 26 VCC 27BD0 28 BD1

U19 1 BA0 2 BA1 3 BA2 4 OUT0

 5 OUT1 6 OUT2 7 OUT3 8 DigitalGnd

 9 OUT4 10 OUT5 11 OUT6 12 OUT7

 13 BA3 14 Sel410-41F 15 Sel406-407 16 Vcc

U20 1 node19 2 node20 3 node21 4 node23

 5 node24 6 node22 7 Rcvr 8 Xmt

 9 SerialOut 10 node25 11 CTS.H

 12 DTROut.L 13 DTR.L 14 CTS.L 15 DigitalGnd 16 VCC

µCEL TM Copyright c 1992 – JComm LAB 42

42

Experimenting With Embedded ControlControl

Chapter 12

XaMonV4B Firmware Monitor
...

All computers, regardless of their size, need a program to run when power is first turned on.

This controller uses the upper 4K of the available EPROM space to hold such a program, the
XaMonV4B-1 monitor.

This program resides in EPROM. Software that is burned into ROMS or EPROM'S is called
firmware. This distinction becomes blurred when EEPROM and battery backed ram are
considered. Occasionally, code loaded into ram will be referred to a "ramware."

This monitor can be viewed as a small operating system, that supports your using the on-
board hardware of this machine in a more convenient way.

The XaMonV4B monitor program was designed to be modular in construction. This
monitor was implemented by using subroutines that perform a relatively simple duty. These
subroutines were in turn, used to build more complex procedures or subroutines. The terms
procedure and subroutine can be used interchangeably in this text. You may want to use the term
'subroutine' when referring to a piece of code that does not have much possibility for reuse, and
'procedure' for a routine that does.

What's nice about the XaMonV4B procedures is that you can call these prewritten routines
from your software. This can make your programming task a lot easier. The interface example at
the end of this manual can show you how this is done.

After the following definitions is a description of the XaMonV4B routines. Not much
distinction will be made as to whether a routine qualifies as a subroutine or a procedure. We'll let
you decide!

Definitions Addressing Modes:
Different ways of instructing the CPU to access data or instructions within the memory

map of the processor.
Accumulator: Central register of the 65C02. Most instructions act on this register in some way.
Can be referred to as either Accum, Acc or A.
Index Registers: Referred to as the X and the Y registers. They, like the accumulator are 8 bits
long. X & Y may be used as loop counters. The Y register, when used with the page 0 addressing
mode, can use any two consecutive bytes on page 0 as a 16 bit register. This partially makes up
for the lack of general purpose 16 bit registers.

With some addressing modes the X or Y registers act as indices to obtain an address. That
address is then used to access some other location in memory.

No explanation will be given of the 65C02 instruction set. There are good books available
on this topic. Included with the documentation is a file named XaTestR.ASM that is a source code
listing of all the assembler psuedoOps and every 65C02 instruction in every 65C02 addressing
mode. This listing can be used to check out your assembler and show you the syntax of all the
available instructions. The subroutines to be described can be divided into seven basic
categories;

µCEL TM Copyright c 1992 – JComm LAB 43

43

Experimenting With Embedded ControlControl

1) Utility : Low level timing, etc
2) Serial I/O Routines : Uart - related
3) Input Routines : For getting data
4) Output Routines : For outputting data
5) Conversion Routines : For acting on the data
6) Data Manipulation : For user interfacing
7) Higher-level Routines:For performing more complex operations

The following is a brief description of the subroutines and procedures used in the
XaMonV4B monitor EPROM. Again, the term subroutine can be used to describe a lower-level
operation. The term procedure can be used to describe a higher-level operation.

The distinction between these terms as used here is arbitrary; the reader is encouraged to
make their own assessments.

From time to time you may see a "CALL" mnemonic used in some of the source code
provided instead of the usual "JSR." The CALL is typically used to denote a call to a procedure
and the JSR a jump to a subroutine. If you look at the listing, the hex object code generated for
either of these mnemonics is the same. (20 hex) The intention here is twofold:

To communicate with yourself.
Many years ago I wrote a small inventory system in Fortran. (I said many) It represented

about 12 weeks of work and I was quite proud of it. Five years later I dug the 10 pound listing out
in order to sort through some ideas. I was left wondering what, how and why I wrote this code the
way I did. The listing and its content was useless! Consequently; write your code well enough so
that you can understand it 10 years from now. This is easy to do once you clean up any bad
programming habits that you might have.

To communicate with others.
Think about what would happen if your life depended on someone else understanding your

source code. This is a lofty ideal and a goal that is worth pursuing! Your documentation skills will
grow.

The idea of granularity can be useful as you go about partitioning and structuring your
source code for maximum effect.

Granularity is an important software design issue related to the concept of code reuse and
modularity. Make a subroutine too specific (fine grained) and you lower the prospect of re-using it.

A similar result can occur when a procedure is too general (coarse grained.) As you
examine and use the routines in XaMonV4B, consider these issues for yourself. You may find that
some of these routines are "finely tuned" and that others could use some more "elegance," such
as ease-of-use, understandability or efficiency.

The neat part of all this is that you can eventually write your own monitor, your own "bios."
The ideal monitor would do everything you wanted it to, would take up zero EPROM space, and,
after five years since looking at the source code, you would be able to understand what your
program does after about 10 minutes of study!

Your reality will depend on how well you implement structured programming design
techniques. Your future career may depend on how elegant your code writing style becomes.
Many of the "big girls & boys" are writing embedded control programs using RISC processors
(Reduced Instruction Set Computer) that use 90,000 + lines of source code and take up
megabytes of memory. Now is probably the best time for you to practice writing compact, efficient,
re-useable, understandable and maintainable code!! Best to you!!

µCEL TM Copyright c 1992 – JComm LAB 44

44

Experimenting With Embedded ControlControl

XaMonV4B Routines
Immediately following the routine name is the routine's address, and the CPU register(s)

affected in brackets []. The space following is empty if no registers are affected.

ToggleFlag F1DE [A]:Inverts the LSB in the accumulator (Acc.)

Push F1E1 [A]:Takes contents of Acc and pushes it onto the "user" stack located in

memory locations C0-D0. Do not push more than 30 bytes onto the user stack or your program
might demonstrate some really weird symptoms.

Pop F1F0 [A]:Takes last value on user stack and pops it into the Acc.

FastSwap F201 [A,Y]:Takes the "top" (last) two values on the user stack and swaps them.

SaveRegs F21C [A]:Saves the 65C02 CPU registers using pushes. Any call to SaveRegs

must be accompanied by a call to RestoreRegs somewhere else in your program.

RestoreRegs F22D [A]:Restores the 65C02 registers using pops. Must be used if a prior call to

SaveRegs has been made.

SaveSXYAP F240 [A]:Saves the 65C02 CPU registers to fixed locations in memory. (See

interrupt routines starting at F8ED)

RestoreSXYA F25C [A]:Restores the 65C02 CPU registers from fixed locations in memory. (See

interrupt routines)

FastWait F26D :An arbitrary unit of software-programmed time delay.

TenthMilliSec F271 :Delay one hundred micro Seconds. These software delays were calibrated

using a frequency counter and were originally designed to be used for EPROM programming
algorithms.

HalfMilliSec F280 :Delay five hundred micro Seconds.

MilliSecDelay F298 :Delay 1000 micro Seconds.

MSecDelay F29F [Y]:Enter with number of milli Seconds of delay desired in the Y register,

maximum value = FF.

TenthSec F2BE :Delay one tenth of a second. (100 milli Seconds)

Delay1Second F2E4 :Delay one second. (1000 milli Seconds)

DelaySeconds F2EF :Enter with number of seconds of desired delay in X register, max = FF hex,

255 decimal.(over 4 minutes!)

ReadDSRBit F2F6 [A]:Read value of 2651 uart's DSR bit. RETURN TRUE (01=High) or FALSE

(00=Low) in Acc.

SetRTSBit F301 [A]:Enter with desired BOOLEAN value (TRUE or FALSE) in Acc. RTS bit will

be set accordingly. SetDTRBit F315 [A]:Enter with desired BOOLEAN value (TRUE or FALSE) in
Acc. DTR bit will be set accordingly.

BusyReadRS232 F329 [A]:Check the 2651 uart's status register. If a character is present in the

receive holding register RETURN TRUE in Acc with character in VAR "HoldAByte," otherwise
RETURN FALSE in Acc.

ReadRS232 F33B [A]:Keep checking uart (forever if necessary) until a character is received.

When character is found, pass in VAR HoldAByte.

µCEL TM Copyright c 1992 – JComm LAB 45

45

Experimenting With Embedded ControlControl

WriteRS232 F343 [A]:Check to see if transmit holding register (thr) on 2651 is busy. If not busy,

send character located in HoldAByte via thr. IF busy then check to see IF WriteTilSent is TRUE.
IF TRUE then keep waiting until char can be sent, otherwise quit trying to send.

UnLockTransmit F356 [A]:Sends XOn char to JTerm. JTerm expects an XOn character before it

will continue certain operations.

QuickEscTest F35E [A]:Checks RS232 port for an Escape character. IF found RETURN TRUE in

Acc, otherwise RETURN FALSE. This subroutine is a useful way to break out of tight loops used
for testing purposes.

SetBaud F37E [A]:See InitUart F38A. The 2651 uart chip can be set for baudrates from 50 to

19,200 baud. The VARiable "BaudRate" has to be loaded with the baud rate code before calling
this routine. The baudrate code for 19,200 baud is 3F, and 3E for 9,600 baud. Consult the 2651
data sheet for other baud rate codes.

InitUart F38A [A]:This routine does the necessary initialization of the 2651 uart. It initializes the

2651's MODE and COMMAND registers.

InitCkSum F39B [A]:Clears the 16 bit VAR named "Checksum." CheckSumAdd F3A2 [A]:This

routine will take the value in the Acc and add it to "Checksum," using modulo 16 arithmetic. For
example, if the value in "Checksum" were FFFF and then you added 09 (hex), the result would be
0008 hex. The actual computed value would be 10008, but the carry bit is lost, hence 0008.

CheckSum F3AC [A]:Calculates the checksum of the currently defined buffer of memory starting

at 'Start Address' and ending at (Start Address + ByteCount.) You can invoke the checksum from
JTerm by pressing the 's' key.

SetOutput F3D4 [A]:This routine uses the low nibble in the Acc to set the output destination.

XaMonV4B default is to direct I/O to the RS232 port, but you may re-direct the output to any
device, using any device driver you wish. For example, the procedure "WriteString" may be used
to output a string to the PC using JTerm, an LCD display, a pen plotter or even memory,
depending on the IO re-direction CONSTant you use and the output driver you install.

SetInput F3DA [A]:This function is similar to SetOutput, but deals with the input destination. In

this case, the IO redirection constant loaded from the Acc determines where the input routine will
get its data. A byte could come from your custom interface, memory, the RS232 port or a keypad.
The ability to install your own input drivers gives you lots of flexibility.

SetInOut F3E0 [A]:This routine takes the two nibbles in the Acc and sets both

the input and output destination for I/O. The upper nibble sets the input and the lower nibble sets
the output destination.

SetIOToRS232 F3F1 [A]:This routine sets the default I/O re-direction to the RS232 port.

SetIOToRSInUser1Out F3F7 [A]:Notice in this example of redirection, (see source code) that the

upper nibble (the "7" of 73) is used to set the input source. The "3" is used to set the output
destination to your "user" routine.

GetSingleInput F3FD [A]:You enter this routine with the input bit number in the Acc. This routine

returns a BOOLEAN value in the Acc corresponding to the value of the bit you choose.
 Ex: LDA #03 choose bit 3

 JSR GetSingleInput

 BEQ itIsLow

 BNE itIsHigh

For some implementations, this routine is definitely overkill. See "ciL" at FE48 to see how it
can be used.

µCEL TM Copyright c 1992 – JComm LAB 46

46

Experimenting With Embedded ControlControl

SInputByte F40C [A]:One call to this routine reads all 8 of the single-input values as one byte-

wide input value. This allows you to read 8 input levels (switches, TTL values, etc) at a time.

GetInput F42D [A]:This is the generalized input procedure that provides the mechanism for input

re-direction.

AssertSingleOut F472 [A]:Creates an offset to the single output base address using the Y

register. If the value in the Acc is a value from 0 to 7, the output bit will be turned off. If the Acc
value is 8 to F the output bit will be turned on. The goal here was to create a higherlevel of
abstraction.

TurnBitOff F479 [A]:Enter with bit number you want to turn off in Acc. Use any value from 0 to 7.

You can turn a bit off from JTerm by pressing the 'o' key (lower-case) and then the bit number.

TurnBitOn F47E [A]:Enter with bit number you want to turn on in Acc. Any value from 0 to 7. You

can turn a bit on from JTerm by pressing the "O" key (upper-case) and then the bit number.

SOutputByte F486 [A]:Enter with byte value in Acc that you want to present to the single bit

output port as a byte-wide value.

SendOutput F4AE [A]:This is the generalized output procedure that provides the mechanism for

output re-direction.

Wait4Char F4F3 [A]:There is a VAR named "Key" that this routine waits for. The default Key is

XOn or 14 hex. You will loop in this routine until the input device currently installed presents "Key."

Wait4Space F502 [A]:This is an example of using Wait4Char with a different "Key" VAR value.

SCROrYesCk F513 [A]:Enter this procedure with the ascii char in Acc. A BOOLEAN value will be

RETURNed in the Acc: TRUE if the character was a Space (20h),a carriage return (0Dh), or a
'Y' (59h), and FALSE for any other character.

DisableXOnHandShake F52B [A]: JTerm and XaMonV4B use a "software handshake" so that

the PC will not lose characters sent to it while it is writing to the screen or performing some other
system operation. This handshaking can be turned off by using this routine.

EnableXOnHandShake F531 [A]:Of course you get to turn handshaking back on if you want to. If

you get garbled data on the screen using JTerm, press Cntrl-Z or reset the SBC65V1B by
pressing S1.

ReadChar F537 [A]:Forces the MSB bit low, checks for the handshaking XOn char. If an XOn, it

looks for another character. Character read is placed in VAR HoldAByte.

WriteChar F545 [A]:Checks to see if XOn protocol is being used. If it is, WriteChar waits for an

XOn before sending the character stored in the VAR HoldAByte, out the (CIOD) currently installed
output device. Otherwise it does not wait.

SpaceEscWait F557 [A]:Will loop until a space character is presented to the (CIID) currently

installed input device.

SendChars F563 [A,X]:Sends the character found in the Acc, X number of times. See

"Send3Spaces" at F59B.

WriteLn F56A [A]:Sends a carriage return (0D hex) to the CIOD.

SendCRLF F570 [A]:Sends a carriage return and a linefeed (0A hex) to the CIOD.

SendLNFD F573 [A]:Sends only the linefeed character.

ReleaseHost F579 [A]:Sends a control C character (03 hex) to the CIOD.

ClearScreen F57F [A]:Sends a formfeed control-L (1A hex) to the CIOD.

µCEL TM Copyright c 1992 – JComm LAB 47

47

Experimenting With Embedded ControlControl

SendABarSave F587 :Saves the contents of the Acc, sends a "|" (7C hex) character, then

restores the Acc to its original value.

SendADash F58F [A]:Sends a "-" character (2D hex) out the CIOD. Subroutines such as these

are used to make the source code more readable.

SendASpace F595 [A]:Sends a (20 hex) character out.

Send3Spaces F59B [X]:Sends three space characters, clobbers your X register while doing so.

(An ideal routine would not require you to know what registers are being used. A routine that does
not "byte you in the hind-end" is said to have no side-effects. When you are NOT sure what
registers are being used, it is often a good idea to save your registers before making a call to an
"unknown" subroutine.)

InitTerminal F5A3 [A]:Initializes the 2651 uart and clears the screen.

WriteString F5AA [A]: Sends the ascii string following the call to WriteString out the CIOD.

Remember to end the string with a null terminator character (00 hex) so that the routine knows
when to quit. A string can be up to 255 characters including the terminator too.

PrintID F5CC [A]:An example of the use of WriteString. It is a good idea to "ID" all of your eprom

firmware projects. JTerm invokes the PrintID routine by the "?" key. This idea can help you
manage eprom version control.

DoneMessage F5EF [A]:Send the message "Done" out the CIOD.

PressSpaceBarMsg F5F9 [A]:Sends a "Press Space Key" message. Used by NMIRoutine.

GetYResponse F60E [A]:Prompts user with "(yes)." If a "y," a "spacebar" or "carriage return" key

is received by the currently installed input device, this routine RETURNs a BOOLEAN TRUE in
the Acc, else a FALSE if any other character is presented. The proper feedback character is also

sent. GetNoResponse F634 [A]:Prompts user with "(no)." A "Y" response RETURNs a

BOOLEAN FALSE in Acc, an "N" a BOOLEAN TRUE. This is an example of negative logic. See
XaDebugRoutine at F8ED.

Conversion routine Definitions
Some confusion may exist when describing conversion routines. Here are some definitions

you may find useful:
Ascii char :A 1-byte code that represents a printable ascii CHARacter.
AlphaAscii :Printable alphabetic Ascii char 'A'..'Z'
NumAscii :Printable numeric Ascii char '0'..'9'
AlphaNumAsc:An AlphaAscii or NumAscii character.
CntrlAscii :Non-printable ascii chars EX: 'escape' = 1B hex
OtherAscii :A printable non- AlphaNumeric ascii character EX: ' * '
HexAscii :Printable AlphaNumAsc within range '0'..'9' or 'A'..'F' Hex Nibble :Representation of
a 4-bit binary value, range 0..F. EX: 0111B (binary) = 7H (hex)
Hex Byte :Representation of an 8-bit binary value, range 00..FF. EX: 0001 0111B = 1 7H

Some confusion may arise in the fact that a BYTE = CHAR. Some routines will act on any
8-bit entity, regardless of how us humans interpret them. Hex is the representation generally used
for the 65C02, and ascii is generally intended to be printed onto a crt screen or a printer for
human consumption, though there is no hard and fast rule.

µCEL TM Copyright c 1992 – JComm LAB 48

48

Experimenting With Embedded ControlControl

Keep your data TYPES as clear as possible. Focus on your intention of what the data is
for, and strive for clarity and ease of understanding. Please share with others any improvements
you might make in this direction.

Remember, the computer industry per say can make things C ryptic and C omplicated and
C onfusing. You can be part of the solution rather than part of the problem. Maybe it is possible to
make assembly language as easy to read as a higher-level language?

I think that for whatever reason, the computer industry dropped the ball with regard to
computer languages

I'm glad to see that cross-assemblers writers are getting away from forcing us to use those
inane 8 character labels and identifiers and allowing both upper and lower case letters to be used.

The listing generated by an assembler should be as clean and readable as possible, with
no redundant or useless information.

Comment entry should be structured in such a way as to not interfere with the readability of
the text.

And finally, source code should not be position dependent. You should have a wide latitude
of options for entering your source code text.

IsItAscii09 F656 [A]:Enter with an ascii char in Acc. RETURNs TRUE if Printable NumAscii

character, FALSE if it is not.

IsItAsciiAF F666 [A]:Similar to IsItAscii09, but AlphaAscii char range is within 'A..F' IsItAscii0F

F676 [A]:Similar to previous two routines, RETURNs TRUE in Acc if char is a HexAscii character.

IsItAscii F689 [A]:RETURNs TRUE if character is a printable AlphaNumAsc char.

LwrCase2UprCAsc F6A3 [A]: Converts char in Acc from lower case to upper case ascii.

HexAsciiToHexNibble F6AF [A]:Enter with a printable HexAscii character in Acc, RETURN lower

Hex Nibble in Acc.

HexNibbleToHexAscii F6C9 [A]:Enter with lower Hex Nibble in Acc, RETURN printable HexAscii

character in Acc.

GetAsciiNumber F6D9 [A]:Read a char from currently installed input device until a printable

HexAscii number is encountered, which is RETURNed in Acc and VAR "HoldAByte."

GetHexAscii F6E4 [A]:Reads a character from input device. Filters out all characters but a

HexAscii char. RETURNS char in Acc and HoldAByte. (location FC hex)

GetSingleHexNum F6EF [A]:Read a HexAscii number, send Ascii code to output device, and

then convert it to its Hex Nibble equivalent in Acc. GetHexByte F6FE [A]:Get 2 HexAscii
characters and create a Hex Byte representation. EX: 'E' '3' becomes hex E3 in Acc and
HoldAByte.

PrinteByte F71D [A]:Creates the HexAscii characters representing a Hex Byte and sends them

to the CIOD.

PrintNible F72B [A]:Creates the HexAscii character representing the lower Hex Nibble and sends

it to the output device.

PrintByteSave F732 :Same as PrintByte, but Acc is not clobbered.

GetZPWord F738 [A]:Support routine for PrintWord and WriteCard.

PrintWord F74C [A]:Creates the HexAscii characters representing two Hex Bytes. The two bytes

together form a 16 bit word. The HexAscii chars are sent in the following order: "high byte" upper
nibble, "high byte" lower nibble, "low byte" upper nibble, "low byte" lower nibble. This routine
works only on zero page locations 00-FF.

µCEL TM Copyright c 1992 – JComm LAB 49

49

Experimenting With Embedded ControlControl

PrintSBCAdrs F75C [A]: An example of the use of PrintWord, sends the current Program Counter

out to the CIOD.

IncCardNumber F762 [A]:Increments a 5 byte (temp)buffer of hex characters using modulo 10

addition. Routine starts with least significant digit and adds one. If there is a base 10 overflow, it
continues to increment the next higher digit. Notice that there is an entry point to increment any of
the 5 digits.

SkipLeadingZeroes F7B8 [A,Y]:Will send a space char out the installed output device for every

leading zero encountered in the 5 digit array.

PrintCardArray F7C6 [A,Y]:Sends the 5 digit array out as 5 HexNumber characters to the CIOD.

(currently installed output device)

ClearTempBufLocs F7D8 [A,X,Y]:Clears 16 bytes of the TempBuffer array to zero.

CountByteDec F7E8 [A]:Enter with the amount to add to array in Acc. Tempbuffer contains the 5

BCD digit array result.

WriteByteDec F7F6 :Sends decimal representation of a byte in NumAscii form to the CIOD.

WriteCard F806 [A]:Sends decimal representation of a word to the CIOD.

HexToDecimal F84D [A]:Converts a two-byte hex word to its ascii decimal equivalent and sends

it to the CIOD.

PrintPC F86E [A]:Send Program Counter to CIOD in HexAscii form.

PrintRegs F884 [A]:Display the status of CPU regs via CIOD.

XaDebugRoutine F8ED [A]:This is the routine installed by the monitor that is called when a

software interrupt (BRK instruction) is encountered. You may install your own debug routine. A
user installed debug routine might include a "printout" of the variables and memory locations of
interest to you. See InstalDBRoutine at FFE0.

IsItSWI F91B [A]: Two types of interrupts occupy the same vector, the hardware IRQ and the

software (SWI) BRK instruction. This routine RETURNs a TRUE in Acc if a BRK and FALSE if
interrupt is an IRQ.

NMIRoutine F92A:Non-maskable interrupt routine installed by the monitor. You may install your

own. See InstalNMIRoutine at FF9E.

SWIRoutine F948:Software Interrupt Routine installed by the monitor. You may install your own.

See InstalSWIRoutine at FFBF.

SelectInterrupt F995 [A]:This routine determines the type of maskable interrupt encountered

and calls the appropriate (SWI or IRQ) routine.

ShowAllParameters F9AD [A]:Displays the current buffer information, i.e. starting address, and

bytecount by sending info in ascii form to CIOD.

GetFillWP F9DC [A]:WP = "with prompt." Prompts you for the fill (memory) hex character going to

VAR "FillChar."

GetFillChr F9EC [A]:Similar to GetFillWP, without the prompt.

GetNumberOfBytes F9F3 [A]:VARiable "ByteCount" gets (:=) hex byte representing the number

of unit-bytes for the buffer.

GetNumberOfPages F9FA [A]:VAR "PageCount" (ByteCount+1) gets hex byte representing the

number of even pages for the buffer. GetStartAdr FA01 [A]:VAR "StartOfBuffer" gets two bytes to
become the currently defined buffer's starting address.

µCEL TM Copyright c 1992 – JComm LAB 50

50

Experimenting With Embedded ControlControl

GetDestAdr FA11 [A]:Similar to GetStartAdr, this routine loads the address of the destination

buffer used for the "Move" command.

GenEndAdr FA1E [A]:Given the starting address and size of the current buffer, this routine

computes the end address of the buffer.

GetAddrWP FA32 [A]:Prompt for starting address and GetAddress FA3D [A]:initialize necessary

buffer variables.

GetDestAdWP FA44 [A]:Prompt for destination address and GetDestAddr FA4F [A]:initialize

necessary destination buffer variables.

GetByteCntWP FA56 [A]:Prompt for byte count and GetByteCnt FA63 [A]:initialize necessary

buffer variables.

GetPgCntWP FA6A [A]:Prompt for page count and

GetPageCnt FA77 [A]:initialize necessary buffer variables.

GetAllPar FA7E [A]:Prompt for all buffer variables and initializes buffer.

ResetBufferPointers FA8B [A,Y]:Reset the current buffer's pointers back to their starting

location. Call this routine before you perform any action on the currently defined buffer area.

SaveParams FAA2 [A]:Save the current buffer settings.

RestoreParams FAC7 [A]:Restore the formerly saved buffer settings. This routine can be useful

for rom burner firmware.

CkEndOfBuffer FAEC [A]:This routine increments the source and destination buffer pointers and

checks to see if the end of buffer has been reached. If end-of-buffer, RETURNs TRUE in Acc
otherwise FALSE.

XferBuffer FB0A [A]:Transfer a buffer-worth of bytes from currently installed input device to

(CIOD) currently installed output device.

MoveMemory FB16 [A]:An example of the use of XferBuffer. FillMem FB1D [A]:Takes the hex

byte in VAR "FillChar" and sends it out CIOD "bytecount" number of times.

FillRoutine FB2C [A]:An example of I/O re-directed to memory.

ClearSBCRam FB40 [A]:Load any part of RAM with any hex byte, without affecting the current

buffer settings.

DownLoad FB50 [A]:Procedure used by JTerm to load files from the PC into the SBC65V1B's

memory. This routine uses a XOn protocol, so that JTerm only sends a character (byte) to the
SBC when the SBC is ready to receive it.

UpLoad FB68 [A]:Procedure used by SBC to load buffer ram area up to a PC UpLoad.ROC file.

LoadHexData FB7C [A]:Load hex data into SBC ram buffer area via currently installed input

device. This is the routine you use to hand-load keyboard data into the SBC65V1B using Jterm.

CkPtrForHex0 FB97 [A]:RETURNs TRUE if lower nibble in Acc is 00, FALSE if any other hex

number. IncPointersSave FBA3 :This routine is used by the PrintMem procedure. It increments
the temporary buffer pointer and the currently defined buffer pointer. The VAR "ExitFlag" is set to
TRUE if the buffer is at the end, FALSE if not. WriteTempBfrChar FBC9 [A]:Writes byte in Acc to
the temp buffer. RETURNs TRUE in Acc if seventh character, FALSE if not.

GetTempBfrChar FBDB [A]:Get a char from temp buffer and store in VAR HoldAByte. RETURN

TRUE in Acc if eigth character, FALSE if not.

GenerateSpaces FBED [A]:Sends spaces out to CIOD. See PrintMem below.

µCEL TM Copyright c 1992 – JComm LAB 51

51

Experimenting With Embedded ControlControl

PrintLineDump FC0E [A]:Send one line of the current buffer area to CIOD as formatted HexAscii.

PrintAscii FC3F [A,X]:Send ascii equivalent of the previously dumped hex line to CIOD.

PrintMem FC6D [A]:This procedure dumps the entire contents of the currently defined buffer to

the CIOD.

NewResetVector FC90 [A]:Takes the starting address and installs it into the SBC65V1B reset

vector. Subsequent depressions of the reset button S1 on the SBC will vector to the program you
have loaded beginning at the currently defined buffer's starting address. J15 on the SBC must be
open.

NewTestVector FCBC [A]:Similar to NewResetVector above, but is activated upon reset only

when J15 is shorted. It is thus possible to have two different programs available with reset. If you
use a toggle switch to open/close J15, you can control which program you run from a "front
panel."

Monitor-Specific Routines
InitProcedures FCE4 [A]:Initialize buffer address and I/O.

InitServiceRoutines FCF1 [A]:Puts a JMP instruction (4C hex) into the leading byte of each user-

installable service routine.

InstallRoutines FD06 [A]:Installs the necessary pointers for all of the user installable routines of

the XaMonV4B monitor EPROM.

InitMonitor FD1F [A]:Initializes monitor flags and pointers. Executed upon power-up or with the

JTerm "+" command.

InitVarsEaReset FD50 [A]:Initializes the VARs that need to be set each time the SBC is reset with

the push of S1.

Initialize FD62 [A]:This is a very important routine. This routine is called each time the SBC is

reset. The very first time this routine is run, it does a full system reset of all variables and
procedures. After that, only a "partial" reset is performed. This action may be described as a
"Hard" or "Cold-Start" with the first reset, and a "warm" start upon subsequent resets.

Begin FD78 [A]:This is the entry point of the monitor. It all starts here!

CmdInterp FD8E [A]:This is the command interpreter of XaMonV4B. It waits for a character to be

input from the currently installed input device. When a character is received, it determines which
procedures to run by doing a simple compare of the character to the available commands. If a
command is valid, it executes the command. Use JTerm and press Cntrl-N for a list of the
available commands.

TestProgram FF4A [A]:This is the blink test routine that you can run merely by shorting J15 on

the SBC65V1B and pressing the reset button S1.

IRQRoutine FF7C [A]:This routine is run every time a hardware interrupt is activated on pin 4 of

the 65C02.

µCEL TM Copyright c 1992 – JComm LAB 52

52

Experimenting With Embedded ControlControl

Installing Routines
There are several routines that may be replaced by your own routines. "InstalNMIRoutine"

will be used as an example. Notice the instruction
LDA #>NMIRoutine

This instruction may be read as "load the accumulator, with the immediate high byte of the
address of the label "NMIRoutine."

What happens is the assembler obtains the address of "NMIRoutine" from the SYMbol
table.

In this case that address is F92A. Since the high-byte of F92A is 'F9,' F9 is loaded into the
accumulator of the 65C02. That data is then put into the high-byte of the NMI routine's pointer,
"NMIPointer+1."

Next, the instruction
LDA #NMIRoutine

gets the low-byte of the address loaded into the Acc, and then stores the low-byte of
NMIRoutine's address into the low byte of the NMIPointer.

As you will see later, the monitor's hardware vector for an NMI is 0200. When a low-level is
present on the CPU's non-maskable interrupt pin, the program will jump to 0200. Location 0200
has a 4C hex "JMP" instruction, which was loaded by the "InitServiceRoutines" subroutine.
Program control will now go to the following two bytes, which contain the address of the routine
you want to execute. In this case, the NMIRoutine. See lines 158-177 of monitor listing for
additional information.

InstalNMIRoutine FF9E [A]:When a low level is present on pin 6 of the 65C02, an non-maskable
interrupt is initiated. The monitor is set up to run the program/procedure/routine whose address is
loaded into the SBC's NMI pointers.
InstalProgram1 FFA9 [A]:With J15 open, the routine installed here is run when reset button S1
on the SBC is pushed.
InstalProgram2 FFB4 [A]:With J15 shorted, the routine installed here is run when reset button
S1 on the SBC is pushed.
InstalSWIRoutine FFBF [A]:The routine installed here will run every time a break instruction
(BRK) is executed in your program.
InstalIRQRoutine FFCA [A]:The routine installed here will run every time an IRQ low pulse is
sensed at pin 4 of the 65C02. The interrupt enable bit must be activated in the CPU status
register with the "CLI" instruction.
InstalSelectRoutine FFD5 [A]:This vector was used to allow you a little more flexibility as to how
you get to your IRQ and SWI routines, by allowing you the possibility of installing your own "Select
Routine."
InstalDBRoutine FFE0 [A]:The routine here will run every time a BRK instruction is encountered
and the "DebugFlag" is TRUE.
InitTempBuffer FFF1 [A]:This routine set the location of your tempbuffer used for WriteCard and
PrintMem procedures.

CPU Hardware Vectors FFFA-FFFF
The CPU vectors on this monitor are set to the following locations:

Loc: FFFF FFFE FFFD FFFC FFFB FFFA
 Data: 02 09 FD 78 02 00

µCEL TM Copyright c 1992 – JComm LAB 53

53

Experimenting With Embedded ControlControl

The CPU will jump to 0200 when a non-maskable interrupt is encountered, FD78 when a
reset is encountered and 0209 when a maskable interrupt is encountered. Notice that two of the
vectors jump to locations in SBC ram. This allows you to place YOUR vectors in ram, hence you
can install your own interrupt service routines!

One final note. The F000 to F1DD portion of the memory map is not actually part of the
monitor. It is a "scratchpad" area that can be used for anything you want. JComm LAB has used
this area to put LCD display and Dallas "SmartWatch" initialization routines. You can clear this
area by reading the XaMonV4B into your rom burner and putting FF into locations F000-F1DD
(as mapped in the SBC not in your rom burner), and then burning a new monitor.

If you decide to use a 64K EPROM, be sure to burn the monitor image into the high-portion
of each 32K byte "chunk." Then you can set up the bank switching scheme which will give you
even more versatility. Maybe there is room enough for a really big project?

Your program's starting address will be placed in the reset vector @ FFFC FFFD. All you
will have to do to run your program after you have burned your program and new reset vector into
an EPROM is to install the EPROM into the socket and turn on the power! (Be sure to include
properly working initialization routines!)

The uart also has a general purpose output bit which is available to wire into the bank
select pin of the EPROM, PN1. This will allow you to have two 28K (32K minus monitor) programs
available in EPROM, under software control as discussed in Chapter 9.

µCEL TM Copyright c 1992 – JComm LAB 54

54

Experimenting With Embedded ControlControl

Chapter 13

XaMonV4B Firmware Monitor Listing
...

A monitor listing can serve you in several ways. Here are some suggestions.

By using your editor's 'search' command on the monitor listing, you can find
actual examples of how different 65C02 instructions are used. For example, you
could search on 'TXA' and observe how this instruction is used by this monitor.
You might use a monitor routine as the basis for your own original subroutine
or procedure.
You may want to modify or optimize some of the routines in this monitor; to
make a routine shorter in length, faster, or easier to use or understand.
This listing can serve as a starting point for designing and writing your own
monitor. There may be routines in this monitor you don't want or need. You may
have some original routine that begs to be part of YOUR monitor!
Few implementations are optimum and this monitor is no exception. If you are
designing a monitor -- regardless of the type of processor you are using -- this
listing might give you some ideas. At least you won't have to start from ground
zero!

Listing Organization
Notice the line numbers at the far left of the listing. These numbers range from 0001 to

2200. Each number represents a line of code or a comment. Reference to these numbers are
made in this chapter.

The first source code line (0001) contains the MODULE name. This name, as well as all
labels and identifiers in the body of the source code, can be up to 31 characters long.

All text is upper and lower case sensitive. The label "LoopPoint" and "Looppoint" would
show up in the SYMbol table as being two different entries. Label names beginning with lower
case letters do not show up in the symbol table. This removes the clutter of local labels from the
symbol table.

This points to a possible programming style: If a label is local to a procedure, begin the
label with a lower case letter. Important procedures should begin with an upper case letter. A
numeric character may not be used at the beginning of a label or other identifier.

Information Block
This block start on line 0002 and continues to line 0014. This text does not have to be

present, but is highly recommended. This text contains your company name, the current date and
time, a short description of what the code does, the file name and size, and other useful
information. Oftentimes you may start a project from code previously written. (remember code
reuse) I like to include the 'source' of this source code in this section. The size of both the source
and object code can be important to you as well.

During a project, I like to keep a record of how many edit-assemble-run cycles I initiate on
a given day. This total is in turn added to a grand total, along with the number of lines of code
written. This can provide information as to how long a project took to complete.

µCEL TM Copyright c 1992 – JComm LAB 55

55

Experimenting With Embedded ControlControl

Project history (lines 15-44)
can be a useful part of you firmware documentation. This can assist you with the all important
version control. Any time you add or modify the source code, you may find it helpful to include the
date of the modification and what the heck it is you did. Notice XaMonV4 B was started in Aug of
1991 and its earliest predecessor in July of 1988!

CONSTant Section (lines 45 through 116)
contain the monitor's constants. Notice that there are several categories of
constants. These constants are "classified" so as to make the source code more
readable and/or understandable.
Ascii constants are generally used for the "non-printable" ascii characters. A
printable character is usually declared in single quotes. For example LDA #'A'
loads an ascii "A" into the CPU's accumulator.
Boolean constants can be used a parameters in subroutines or procedures that
pass a TRUE or FALSE back to the calling program (usually through the
Accumulator) and as values for flags. Mask constants are used in routines that
operate on one or more bits of an 8-bit byte. (see line 510)
I/O redirection constants are used by the monitor to change the source and
destination of input and output in a more readable way. For example, see lines
1627-1635 of this listing.
Serial constants are used by the RS232 uart routines for the 2651 uart, U18.
These are the initial values used by the monitor to set the uarts's registers
controlling baud rate, etc.

Page Zero Variables
The memory locations from 0000H to 00FFH are very important, because of

the 65C02's zero page addressing mode. Instructions operating on page zero
locations execute more rapidly. They take two bytes rather than three.
Page zero locations can also operate as (up to 128) 16-bit registers. The author's
goal was to use as few of these valuable locations as possible. 70 out of the
possible 256 were used, 32 of which are dedicated to a "User Stack." That means
that only 15% of page zero is actually used by this monitor. This usage is found on
lines 117 to 154.
Page 2 Variables

To save page zero space, many of the monitor's variables were placed in
locations 200H to 2FFH (lines 155 to 230) It was determined that most of these
variables are not time-critical. In other words, they are not called often enough to
warrant being located on page zero. Notice that there are 159 locations at the end
of page 2 for your program's variables.

Hardware Equates
These are a special type of constants that represent the addresses of the I/

O section of the SBC65V1B hardware. (lines 234-250)

System Equates (lines 251-257) are to remind you of the locations of the reset
and interrupt vectors of the CPU.

µCEL TM Copyright c 1992 – JComm LAB 56

56

Experimenting With Embedded ControlControl

Code Section
At reset, code begins executing at address FD78 (hex). Notice that the

supporting procedures found on lines 265-1893 are skipped over to the beginning
of the actual monitor program on line 1895, (ending at line 2091). This was done
intentionally to mimic the Modula-2 style of programming, which places the
supporting procedures before the main body of the program.

Notice the four-digit hex number to the right of each line number. This
number represents the CPU's program counter. Following the program counter are
one to three bytes which represent either CPU instructions or data. These hex
codes are generated by the cross-assembler.

Comments
Comments are entered in one of two ways.

1) If a line begins with an asterisk, all characters to the right of the asterisk are
considered to be comments.

2) All characters to the right of an instruction mnemonic are considered
comments. The only exception; some single byte commands like ASL. These
instructions will give you an error message if you place a comment on the same
line with it.

Instructions for running this monitor out of SBC65V1B RAM
Step 1 Change the XaMonV4B.ASM monitor source code. Change the ORG value
from 0F1DE to ORG:= 0500 and the "34" in line 1864 of InitMonitor and line 1886
of Initialize to "43." Modify 'PrintID' procedure by adding an "R." The message will
now read "XaMonV4B-1R." Re-assemble XaMonV4B.ASM using JAsm on your
PC.
Step 2 Run JTerm. Press the reset button on the SBC65V1B module. Press '+'
key on keyboard to reset the monitor's VAR's.
Step 3 Download object code XaMonV4B.ROC (using JTerm's 'Control-D'
command) into SBC65V1B ram starting at location 0500H.
Step 4 Press control-Z key.
Step 5 Run monitor program from JTerm by pressing 'G' (for go). CRT should
display ID message "JComm LAB uCEL (TM) XaMonV4B-1R"

Notes:
Because of the initialization structure used, reset will take you back to the

Eprom XaMon4B-1 monitor. You have to use the 'G' go command to reenter your
"ram" monitor.
 JTerm commands are case-sensitive, so put your caps lock 'ON', and use the shift
key to get to the lower case letters.
Monitor modifications are best done one routine at a time. Rather than use the
entire monitor in RAM, a better approach is to make a small set of programs to test
out each new idea. The technique envolves writing two programs. One is
exclusively for the new procedure of interest, the other is a test program. For
example, say you wanted to write a new "WriteCard" procedure;

µCEL TM Copyright c 1992 – JComm LAB 57

57

Experimenting With Embedded ControlControl

Phase 1 Write the new routine as a separate program.
 MODULE NewWriteCard –XaMonV4B

 EQUates-WriteCard

 NOP --your new code-

 RTS

 END NewWriteCard

Phase 2 Download the NewWriteCard object code into SBC ram @ 500 hex
Phase 3 Write a test program using the previously downloaded address of the
procedure in ram as the reference. You can get the address of WriteCard from the
NewWriteCard SYMbol table or the LST file.
 MODULE WriteCardTest –XaMonV4B
EQUates-WriteCard ADR 0500 (instead of XaMonV4B's 0F806)

 --(your test code)-

 RTS

 END WriteCardTest

Phase 4 Download WriteCardTest at say, 1000H and then run it. Your test program
can now use your version of WriteCard that you have downloaded into another
location of ram, rather than the version of WriteCard in the monitor EPROM.
It is possible to combine the two program technique into one program.

If you don't understand this discussion, continue using the XaMonV4B
routines, continue to write your own "ramware," understanding will follow!

µCEL TM Copyright c 1992 – JComm LAB 58

58

Experimenting With Embedded ControlControl

SBC65V1B XaMonV4B.ASM Listing
0001 |*
0002 |* JComm LAB Sat 20 Apr 1992 10:39 AM
0003 |*
0004 |***----------- --Begin Information Block----------------***
0005 |*Description:Single Board Computer Monitor Eprom code for
0006 |* SBC65V1B ECB-23079101 MN4301-I
0007 |*FileName :XaMonV4B.ASM Created FROM XaMonV4A.ASM
0008 |*Filesize :Source = 63,304 Object Code = 3,618 (E22 Hex)
0009 |*System :XaMonV4B-1 on SBC65V1B
0010 |*Last Mod :Mon 14 Mar 1992 Assemblies:
0011 |*Statistics :Last Hours :00.0 Hrs/ 0000 Lines/000 Assemblies
0012 |* Total Hours:99.9 Hrs/ 2199 Lines/218 Assemblies
0013 |*Start Date :6 Jul 1988 End Date: 1 Jun 1992
0014 |***-------------- End Information Block-----------------***
0015 |*
0016 |*History:
0017 |* Version V3.0C 6 Jul 1988 1st Assembled on Lilith as SBCMon
0018 |*12 Feb 1989 Started New version for SBC65V1A
0019 |* Version V4.0A 14 Jul 1989 1st working ROM of new version
0020 |* Version V4.0B 19 Jul 1989
0021 |* Version V4.0C 25 Jul 1989
0022 |* Version V4.0D 25 Nov 1989 had bugs
0023 |* Version V4.0D 2 Dec 1989 DownLoad,UpLoad
0024 |* Version V4.0D 3 Dec 1989 With Eprom Burner stuff
0025 |* Version V4.0E 21 Dec 1989 Push,Pop,BitOn/Off
0026 |* Version V4.0F 29 Sep 1990 New PrintMem,I/O redirection
0027 |* Interrupts,LwrCase2Upr (2Wks)
0028 |* Version V4.0G 14 Oct 1990 New XOn handshake 2,402Bytes
0029 |* XaMonV4A3017 23 Oct 1990 WriteCard,XaRom SBR's imported
0030 |* 3022 24 Oct 1990 Improved Interrupts
0031 |* 3195 30 Oct 1990 Debug,Trace,NMIRoutine
0032 |* 3200 31 Oct 1990 Add Uart I/O bit
0033 |* XaMonV4B1 16 Aug 1991 Remove Parallel I/O,add comments
0034 |* 7 Oct 1991 Add BusyReadRS232
0035 |* 3312 9 Oct 1991 New Single Bit Input/Output
0036 |* 3636 16 Oct 1991 Add ParIn & ParOut Drivers
0037 |* 3388 21 Oct 1991 Uart pin test,tweaked delays
0038 |* 3399 28 Jan 1992 SBC65V1B I/O NewMenu
0039 |* 3463 09 Feb 1992 SInputByte,Reset,RemoveParOut/In
0040 |* 3555 20 Feb 1992 Re-do reset, Add CkSum
0041 |* 3554 22 Feb 1992 Routine1,routine2 load vector
0042 |* 3592 9 Mar 1992 Fix bug in checksum,reset
0043 |* 20 Apr 1992 Add SmartWatch Loop-up Table
0044 |* 3618 1 Jun 1992 Move start of mon to F1DE
0045 |*
0046 |* Equate Definitions: Must begin with an upper case letter
0047 |* to show up in SYMbol table
0048 |* EQU = Equate = CONSTant
0049 |* VAR = Variable (1 byte)
0050 |* PTR = POINTER var,(bytes that hold an address
0051 |* of where data is, rather than the data itself)
0052 |* Must be a Page Zero VARiable
0053 |* ADR = ADDRESS constant ('fixed' location in mem)
0054 |* String Equates:Hex 0 must end any WriteString
0055 |* ASC = data within quotes ' ' are Ascii chars
0056 |* ASZ = ascii chars followed by 0 marking end-of-string
0057 |* RASC = return char, followed by ascii chars
0058 |* RASZ = ret char, followed by ascii, then zero

µCEL TM Copyright c 1992 – JComm LAB 59

59

Experimenting With Embedded ControlControl

0059 |*
0060 |*CONSTants
0061 |*
0062 |*Ascii CONSTants
0063 |*
0064 define |NULL EQU 00
0065 define |ControlC EQU 03
0066 define |LineFeed EQU 0A
0067 define |CReturn EQU 0D
0068 define |XOff EQU 13
0069 define |XOn EQU 14
0070 define |ControlZ EQU 1A
0071 define |Escape EQU 1B
0072 define |Space EQU 20
0073 |*
0074 |* BOOLEAN CONSTants
0075 |*
0076 define |FALSE EQU 00 = 'OFF'
0077 define |TRUE EQU 01 = 'ON'
0078 |*
0079 |* MASK CONSTants
0080 |*
0081 define |BIT0 EQU 01 %0000 0001
0082 define |BIT1 EQU 02 %0000 0010
0083 define |BIT4 EQU 10 %0001 0000
0084 define |BIT5 EQU 20 %0010 0000
0085 |*
0086 |* I/O Redirection CONSTants
0087 |*
0088 |* The following constants are used w/the Procedures GetInput
0089 |* & SendOutput for I/O redirection. SetInput SetOutput &
0090 |* SetInOut allow the user to declare which routine is
0091 |* used for input or output.
0092 |* TYPE I/O=
0093 define |MEMORY1 EQU 0 Source
0094 define |MEMORY2 EQU 1 Destination
0095 define |SINGLEBYTE EQU 2
0096 define |USER1 EQU 3
0097 define |USER2 EQU 4
0098 define |SCREEN EQU 5
0099 define |KEYBOARD EQU 6
0100 define |RS232 EQU 7
0101 |*
0102 |* I/O Redirection CONSTants for loading into 'IOState'
0103 |*
0104 define |InMem1OutMem2 EQU 01 0 1
0105 define |InRSOutRS EQU 77 input^ ^output
0106 define |InRSOutUser1 EQU 73
0107 |*
0108 |* Timing CONSTant
0109 |*
0110 define |MSecCount EQU 0C0 was 198Z (Z=Decimal)
0111 |*
0112 |* SBC65V1B Serial CONSTants
0113 |*
0114 define |ENABLE EQU 05 2 Stop Bits,Odd Parity,Par Disabl,8 Data
0115 define |MODE1 EQU 0CE ASYNC 16X RATE= CE
0116 define |MODE2 EQU 3F 19200 Baud INT CLK 1X RATE, via Table 1
0117 |*

µCEL TM Copyright c 1992 – JComm LAB 60

60

Experimenting With Embedded ControlControl

0118 |* Page Zero VARiables (Mem locs 00-FF) 0119 |*
0120 |*Eprom Burner Vars (If you use XaRom SBR's, don't use B8-BF)
0121 |*
0122 define |ResetPointr PTR 0B8 0B9
0123 define |RomAdr ADR 0BA 0BB
0124 define |TotalCount VAR 0BC 0BD
0125 define |Checksum VAR 0BE 0BF
0126 |*
0127 |* User Stack
0128 |*
0129 define |StackSpace ADR 0C0 0DE and 0DF used by Push & Pop.
0130 |* You have 30Z locations available to Push onto.
0131 |* Past that, your whole darn program blows up!!
0132 |* 0133 |* Global POINTER s
0134 |*
0135 define |GPOINTER ADR 0E0
0136 define |BufferPointer1 PTR GPOINTER
0137 define |BufferPointer2 PTR GPOINTER+2
0138 define |StackAddress PTR GPOINTER+4
0139 define |StackPointer PTR GPOINTER+6
0140 define |TempPointer PTR GPOINTER+8Z ('Z' = Decimal)
0141 define |TempBufferPtr PTR GPOINTER+10Z
0142 define |UserPC PTR GPOINTER+12Z User's Program Counter
0143 define |Debug PTR GPOINTER+14Z User's SWI break routine
0144 |*
0145 define |IOPointer ADR 0F0 Pointers to I/O routines
0146 define |UserInput1 PTR IOPointer User's input routine address
0147 define |UserInput2 PTR IOPointer+2
0148 define |KeyboardIn PTR IOPointer+4 User's Keyboard routine address
0149 define |UserOutput1 PTR IOPointer+6 User's output routine address
0150 define |UserOutput2 PTR IOPointer+8
0151 define |Screen PTR IOPointer+10Z User's CRT routine address
0152 define |HoldAByte VAR IOPointer+12Z Single value par used for I/O
0153 define |TempLoc VAR IOPointer+13Z
0154 define |UserIOVars VAR IOPointer+14Z User I/O variables
0155 |*
0156 |* PAGE 2 VARiables
0157 |*
0158 |* Interrupt Vectors Summary
0159 |*
0160 |* Int |Eprom Loc|Points To|Initialized To|MonitorInstalls
0161 |* NMI | 0FFFA/B | 0200 |JMP NMIService|NMIRoutine
0162 |* Reset| 0FFFC/D | 0F000 |JMP Begin |
0163 |* SWI | 0FFFE/F | 0209 |JMP IntService|IRQRoutine
0164 |* IRQ | 0FFFE/F |
0165 |* Example:
0166 |*When a NMI interrupt signal is encountered, the CPU gets
0167 |*the vector it is going to JMP to from 0FFFA-0FFFB. In this
0168 |*example, 0FFFA/B contain 0200. 0200 is a loc in RAM that
0169 |*has been initialized by the monitor with 4C, the 'JMP'
0170 |*instruction. Ram locs 0201-0202 have been initialized by
0171 |*the monitor with the address of the NMIRoutine. Interrupt
0172 |*service then becomes a series of jumps, as follows:
0173 |*CPU NMI>then JMP to 0200>then JMP to NMIRoutine. By having
0174 |*the Eprom vector pointing to a previously initialized
0175 |*location in RAM, you can install your OWN interrupt
0176 |*service routines! (ISR's)
0177 |*
0178 define |Page2 ADR 0200 Monitor Installs

µCEL TM Copyright c 1992 – JComm LAB 61

61

Experimenting With Embedded ControlControl

0179 define |NMIService ADR Page2 0200
0180 define |NMIPointer VAR Page2+1Z 0201/202 NMIRoutine
0181 define |SWIService ADR Page2+3Z 0203
0182 define |SWIPointer VAR Page2+4Z 0204/205 SWIRoutine
0183 define |IRQService ADR Page2+6Z 0206
0184 define |IRQPointer VAR Page2+7Z 0207/208 IRQRoutine
0185 define |IntService ADR Page2+9Z 0209
0186 define |IntServPointer VAR Page2+10Z 020A/20B SelectInterrupt
0187 define |Prog1Service ADR Page2+12Z 020C
0188 define |Program1Ptr VAR Page2+13Z 020D/20E cmdI address
0189 define |Prog2Service ADR Page2+15Z 020F
0190 define |Program2Ptr VAR Page2+16Z 0210/211 TestProgram Adr
0191 define |IRQTable ADR Page2+18Z 0212 to 214 (3 locations)
0192 |*
0193 |* Page 2 VARiables
0194 |* Hex Address
0195 define |BufferEnd VAR Page2+21Z 0215/0216
0196 define |StartOfBuffer1 VAR Page2+23Z 0217/0218
0197 define |StartOfBuffer2 VAR Page2+25Z 0219/021A
0198 define |ByteCount VAR Page2+27Z 021B
0199 define |PageCount VAR Page2+28Z 021C
0200 |*
0201 define |ExitFlag VAR Page2+29Z 021D
0202 define |DebugFlag VAR Page2+30Z 021E
0203 define |UserFlag VAR Page2+31Z 021F
0204 define |ResetFlag VAR Page2+32Z 0220
0205 define |TraceFlag VAR Page2+33Z 0221
0206 define |WriteTilSent VAR Page2+34Z 0222
0207 define |XOnFlag VAR Page2+35Z 0223
0208 |*
0209 define |BaudRate VAR Page2+36Z 0224
0210 define |Count VAR Page2+37Z 0225 0226
0211 define |CPUXReg VAR Page2+39Z 0227
0212 define |CPUYReg VAR Page2+40Z 0228
0213 define |CPUAccumulator VAR Page2+41Z 0229
0214 define |CPUStatusReg VAR Page2+42Z 022A
0215 define |CPUPgmCounterLo VAR Page2+43Z 022B
0216 define |CPUPgmCounterHi VAR Page2+44Z 022C
0217 define |UserDelayTime VAR Page2+45Z 022D 022E
0218 define |ErrorMsg VAR Page2+47Z 022F
0219 define |FillChar VAR Page2+48Z 0230
0220 define |InputDest VAR Page2+49Z
0231 0221 define |IOState VAR Page2+50Z 0232
0222 define |Key VAR Page2+51Z 0233
0223 define |OutputDest VAR Page2+52Z
0234 0224 define |RomStart VAR Page2+53Z 0235
0236
0225 define |TraceVar VAR Page2+55Z 0237
0226 define |WarmStart VAR Page2+56Z 0238
0227 define |SmartWatchPad VAR Page2+57Z 0239
0228 define |RomVars EQU 023A to 0253 Locs used by Romburner
0229 define |OpenRomVar EQU 0254 to 0260 Romburner expansion
0230 define |UserVars EQU 0261 to 02FF 159 User locations
0231 define |TempBuffer ADR 0300 to 030F Buffer for line dump routine
0232 define |WatchBuffer ADR 0310 to 0318
0233 |* ADR 0319 to 03FF Available to User.
0234 |*
0235 |* SBC65V1B Hardware Equates
0236 |*

µCEL TM Copyright c 1992 – JComm LAB 62

62

Experimenting With Embedded ControlControl

0237 define |ClearSingleOut ADR 0406 0407
0238 define |SingleOutput ADR 0410
0239 define |SingleOutputOff ADR 0410
0240 define |SingleOutputOn ADR 0418
0241 define |SingleInput ADR 0420
0242 |*
0243 |* Uart
0244 |*
0245 define |RcvrReg ADR 0430
0246 define |XmtReg ADR RcvrReg
0247 define |StatusReg ADR RcvrReg+1
0248 define |ModeReg1 ADR RcvrReg+2
0249 define |ModeReg2 ADR ModeReg1
0250 define |CmdReg ADR RcvrReg+3
0251 |*
0252 |* Single Board Computer SYSTEM EQUates
0253 |*
0254 define |NonMaskInt ADR 0FFFA 0FFFB
0255 define |ResetInt ADR 0FFFC 0FFFD
0256 define |SoftwareInt ADR 0FFFE 0FFFF
0257 define |MaskableInt ADR 0FFFE 0FFFF
0258 |*
0259 |* CODE SECTION
0260 define |XaMonV4B ADR 0FD78
0261 define | ORG 0F1DE = Start Loc of OBJ Code in SBC Memory
0262 |*
0263 |* Note: Labels beginning with lower case letters will NOT
0264 |* show up in the SYMbol table file!!!
0265 |*
0266 |**------------------ PROCEDURES -----------------**
0267 |*
0268 |* Invert tense of FLAG
0269 F1DE 49 01 |ToggleFlag EOR #01
0270 F1E0 60 | RTS
0271 |*
0272 |* Maximum 30 levels deep
0273 F1E1 85 FC |Push STA HoldAByte PROCEDURE Push(Acc:BYTE);
0274 F1E3 5A | PHY
0275 F1E4 A4 E6 | LDY StackPointer
0276 F1E6 A5 FC | LDA HoldAByte
0277 F1E8 91 E4 | STA (StackAddress),Y
0278 F1EA E6 E6 | INC StackPointer
0279 F1EC 7A | PLY
0280 F1ED A5 FC | LDA HoldAByte
0281 F1EF 60 | RTS
0282 |*
0283 F1F0 5A |Pop PHY PROCEDURE Pop(VAR Acc:BYTE);
0284 F1F1 A4 E6 | LDY StackPointer
0285 F1F3 F0 04 | BEQ pSkip
0286 F1F5 C6 E6 | DEC StackPointer
0287 F1F7 A4 E6 | LDY StackPointer
0288 F1F9 B1 E4 |pSkip LDA (StackAddress),Y
0289 F1FB 85 FC | STA HoldAByte
0290 F1FD 7A | PLY
0291 F1FE A5 FC | LDA HoldAByte
0292 F200 60 | RTS
0293 |*
0294 F201 48 |FastSwap PHA 71 cycles swap top 2 stack entries
0295 F202 5A | PHY

µCEL TM Copyright c 1992 – JComm LAB 63

63

Experimenting With Embedded ControlControl

0296 F203 A4 E6 | LDY StackPointer
0297 F205 88 | DEY
0298 F206 B1 E4 | LDA (StackAddress),Y
0299 F208 48 | PHA
0300 F209 88 | DEY
0301 F20A B1 E4 | LDA (StackAddress),Y
0302 F20C 85 FD | STA TempLoc
0303 F20E 68 | PLA
0304 F20F 91 E4 | STA (StackAddress),Y
0305 F211 C8 | INY
0306 F212 A5 FD | LDA TempLoc
0307 F214 91 E4 | STA (StackAddress),Y
0308 F216 C8 | INY
0309 F217 84 E6 | STY StackPointer
0310 F219 7A | PLY
0311 F21A 68 | PLA
0312 F21B 60 | RTS
0313 |*
0314 F21C 20 E1 F1 |SaveRegs JSR Push save Accum & all other CPU regs
0315 F21F 8A | TXA
0316 F220 20 E1 F1 | JSR Push save X
0317 F223 98 | TYA
0318 F224 20 E1 F1 | JSR Push save Y
0319 F227 08 | PHP
0320 F228 68 | PLA
0321 F229 20 E1 F1 | JSR Push save status
0322 F22C 60 | RTS
0323 |*
0324 |* Note:
0325 |*Equal number of pushes and pops must be executed between
0326 |*calls to SaveRegs and RestoreRegs,otherwise strange results
0327 |*may occur.
0328 F22D 20 F0 F1 |RestoreRegs JSR Pop
0329 F230 48 | PHA
0330 F231 20 F0 F1 | JSR Pop restore Y
0331 F234 A8 | TAY
0332 F235 20 F0 F1 | JSR Pop restore X
0333 F238 AA | TAX
0334 F239 20 F0 F1 | JSR Pop
0335 F23C 48 | PHA
0336 F23D 68 | PLA restore Accum
0337 F23E 28 | PLP restore status
0338 F23F 60 | RTS
0339 |*
0340 |* "Hard Save" registers to Global Vars rather than Userstack
0341 |*
0342 F240 8D 29 02 |SaveSXYAP STA CPUAccumulator
0343 F243 08 | PHP
0344 F244 68 | PLA
0345 F245 8D 2A 02 | STA CPUStatusReg
0346 F248 8C 28 02 | STY CPUYReg
0347 F24B 8E 27 02 | STX CPUXReg
0348 F24E 68 | PLA
0349 F24F 8D 2B 02 | STA CPUPgmCounterLo
0350 F252 68 | PLA
0351 F253 8D 2C 02 | STA CPUPgmCounterHi
0352 F256 48 | PHA
0353 F257 AD 2B 02 | LDA CPUPgmCounterLo
0354 F25A 48 | PHA

µCEL TM Copyright c 1992 – JComm LAB 64

64

Experimenting With Embedded ControlControl

0355 F25B 60 | RTS
0356 |*
0357 F25C AD 2A 02 |RestoreSXYA LDA CPUStatusReg
0358 F25F 48 | PHA
0359 F260 AC 28 02 | LDY CPUYReg
0360 F263 AE 27 02 | LDX CPUXReg
0361 F266 AD 29 02 | LDA CPUAccumulator
0362 F269 48 | PHA
0363 F26A 68 | PLA
0364 F26B 28 | PLP
0365 F26C 60 | RTS
0366 |*Software timing routines tweeked using a frequency counter
0367 F26D EA |FastWait NOP PROCEDURE FastWait;
0368 F26E EA | NOP BEGIN
0369 F26F EA | NOP END FastWait;
0370 F270 60 | RTS
0371 |*
0372 F271 20 6D F2 |TenthMilliSec JSR FastWait .0001 Secs
0373 F274 20 6D F2 | JSR FastWait
0374 F277 20 6D F2 | JSR FastWait
0375 F27A 20 6D F2 | JSR FastWait
0376 F27D EA | NOP
0377 F27E EA | NOP
0378 F27F 60 | RTS
0379 |*
0380 F280 20 71 F2 |HalfMilliSec JSR TenthMilliSec .0005 Secs
0381 F283 20 71 F2 | JSR TenthMilliSec
0382 F286 20 71 F2 | JSR TenthMilliSec
0383 F289 20 71 F2 | JSR TenthMilliSec
0384 F28C 20 71 F2 | JSR TenthMilliSec
0385 F28F 20 6D F2 | JSR FastWait
0386 F292 20 6D F2 | JSR FastWait
0387 F295 EA | NOP
0388 F296 EA | NOP
0389 F297 60 | RTS
0390 |*
0391 F298 20 80 F2 |MilliSecDelay JSR HalfMilliSec .001 Secs
0392 F29B 20 80 F2 | JSR HalfMilliSec
0393 F29E 60 | RTS
0394 |*
0395 |* Enter w/# of mSecs in Y reg 0 to FF Hex
0396 |*
0397 F29F DA |MSecDelay PHX PROCEDURE MSecDelay(YReg:BYTE);
0398 F2A0 C0 00 | CPY #0
0399 F2A2 F0 18 | BEQ mSecOut
0400 F2A4 EA | NOP
0401 F2A5 C0 01 | CPY #1
0402 F2A7 D0 03 | BNE delay0
0403 F2A9 4C B7 F2 | JMP lastdelay
0404 F2AC 88 |delay0 DEY
0405 F2AD A2 C0 |delay1 LDX #MSecCount
0406 F2AF CA |delay2 DEX
0407 F2B0 D0 FD | BNE delay2
0408 F2B2 EA | NOP
0409 F2B3 EA | NOP
0410 F2B4 88 | DEY
0411 F2B5 D0 F6 | BNE delay1
0412 F2B7 A2 C0 |lastdelay LDX #MSecCount
0413 F2B9 CA |delay3 DEX

µCEL TM Copyright c 1992 – JComm LAB 65

65

Experimenting With Embedded ControlControl

0414 F2BA D0 FD | BNE delay3
0415 F2BC FA |mSecOut PLX
0416 F2BD 60 | RTS
0417 |*
0418 |* delay for 1 tenth sec.
0419 F2BE 5A |TenthSec PHY .1Secs
0420 F2BF A0 64 | LDY #100Z
0421 F2C1 20 9F F2 | JSR MSecDelay MSecDelay(100);
0422 F2C4 20 98 F2 | JSR MilliSecDelay
0423 F2C7 20 98 F2 | JSR MilliSecDelay
0424 F2CA 20 80 F2 | JSR HalfMilliSec
0425 F2CD 20 71 F2 | JSR TenthMilliSec
0426 F2D0 20 71 F2 | JSR TenthMilliSec
0427 F2D3 20 71 F2 | JSR TenthMilliSec
0428 F2D6 20 71 F2 | JSR TenthMilliSec
0429 F2D9 20 71 F2 | JSR TenthMilliSec
0430 F2DC 20 6D F2 | JSR FastWait
0431 F2DF 20 6D F2 | JSR FastWait
0432 F2E2 7A | PLY
0433 F2E3 60 | RTS
0434 |*
0435 F2E4 DA |Delay1Second PHX 1 Sec
0436 F2E5 A2 0A | LDX #10Z
0437 F2E7 20 BE F2 |d1SLup JSR TenthSec
0438 F2EA CA | DEX
0439 F2EB D0 FA | BNE d1SLup
0440 F2ED FA | PLX
0441 F2EE 60 | RTS
0442 |*
0443 |*PROCEDURE DelaySeconds(XReg:BYTE);
0444 |*Enter w/ X Reg:=NumOfSeconds
0445 F2EF 20 E4 F2 |DelaySeconds JSR Delay1Second
0446 F2F2 CA | DEX
0447 F2F3 D0 FA | BNE DelaySeconds
0448 F2F5 60 | RTS
0449 |*
0450 |* Pin 22. Gen Purpose Input.
0451 F2F6 2C 31 04 |ReadDSRBit BIT StatusReg PROCEDURE ReadDSRBit():BOOLEAN ;
0452 F2F9 10 03 | BPL dsrIsHi
0453 F2FB A9 00 | LDA #FALSE dsr is Lo (*Acc:=Result*)
0454 F2FD 60 | RTS
0455 F2FE A9 01 |dsrIsHi LDA #TRUE dsr is Hi
0456 F300 60 | RTS
0457 |*
0458 |*U18 Pin 23 Gen Purpose output. Can be used for bank
0459 |*switching 64K Eprom.
0460 |*PROCEDURE SetRTSBit(Acc:BOOLEA N); (*Acc:=Level*)
0461 |*
0462 F301 D0 09 |SetRTSBit BNE SetRTSBitHi
0463 F303 AD 33 04 |SetRTSBitLo LDA CmdReg
0464 F306 09 20 | ORA #BIT5
0465 F308 8D 33 04 | STA CmdReg
0466 F30B 60 | RTS
0467 F30C AD 33 04 |SetRTSBitHi LDA CmdReg
0468 F30F 29 DF | AND #0DF
0469 F311 8D 33 04 | STA CmdReg
0470 F314 60 | RTS
0471 |*
0472 |* U18 Pin 24 of Gen Purpose output.

µCEL TM Copyright c 1992 – JComm LAB 66

66

Experimenting With Embedded ControlControl

0473 F315 D0 09 |SetDTRBit BNE SetDTRBitHi
0474 F317 AD 33 04 |SetDTRBitLo LDA CmdReg
0475 F31A 09 02 | ORA #BIT1
0476 F31C 8D 33 04 | STA CmdReg
0477 F31F 60 | RTS
0478 F320 AD 33 04 |SetDTRBitHi LDA CmdReg
0479 F323 29 FD | AND #0FD
0480 F325 8D 33 04 | STA CmdReg
0481 F328 60 | RTS
0482 |*
0483 |* Ck RS232 Port for an incoming CHAR once
0484 |* RETURN '1' in Accum IF a char present,'0' if not
0485 |* Pin 16 DCD.L of Uart must be low for receiver to operate,
0486 |* CTS.L for xmtr. Char is passed in HoldAByte.
0487 |* PROCEDURE BusyReadRS232(VAR HoldAByte:CHAR;Acc:BO OLEAN);
0488 |*
0489 F329 AD 31 04 |BusyReadRS232 LDA StatusReg
0490 F32C 29 02 | AND #BIT1
0491 F32E F0 08 | BEQ busyout
0492 F330 AD 30 04 | LDA RcvrReg
0493 F333 85 FC | STA HoldAByte is used by many I/O Subroutines
0494 F335 A9 01 | LDA #TRUE
0495 F337 60 | RTS
0496 F338 A9 00 |busyout LDA #FALSE
0497 F33A 60 | RTS
0498 |*
0499 |*PROCEDURE ReadRS232(VAR HoldAByte:CHAR);
0500 |*
0501 F33B 20 29 F3 |ReadRS232 JSR BusyReadRS232
0502 F33E F0 FB | BEQ ReadRS232
0503 F340 A5 FC | LDA HoldAByte
0504 F342 60 | RTS
0505
0506 |*Send a char out RS232 port via 'HoldAByte'
0507 |*PROCEDURE WriteRS232(HoldAByte:C HAR);
0508 |*
0509 F343 AD 31 04 |WriteRS232 LDA StatusReg
0510 F346 29 01 | AND #BIT0
0511 F348 F0 06 | BEQ ckRsOut
0512 F34A A5 FC | LDA HoldAByte
0513 F34C 8D 30 04 | STA XmtReg
0514 F34F 60 | RTS
0515 F350 AD 22 02 |ckRsOut LDA WriteTilSent
0516 F353 D0 EE | BNE WriteRS232
0517 F355 60 | RTS
0518 |*
0519 F356 A9 14 |UnLockTransmit LDA #XOn
0520 F358 85 FC | STA HoldAByte
0521 F35A 20 43 F3 | JSR WriteRS232
0522 F35D 60 | RTS
0523 |*
0524 |* BusyRead RS232 port,RETURN TRUE if Esc char detected.
0525 |*
0526 F35E DA |QuickEscTest PHX
0527 F35F A2 20 | LDX #020
0528 F361 20 29 F3 |rdLup JSR BusyReadRS232
0529 F364 D0 03 | BNE qcontCk
0530 F366 CA | DEX
0531 F367 D0 F8 | BNE rdLup

µCEL TM Copyright c 1992 – JComm LAB 67

67

Experimenting With Embedded ControlControl

0532 F369 A5 FC |qcontCk LDA HoldAByte
0533 F36B C9 9B | CMP #9B
0534 F36D F0 0B | BEQ yesGo
0535 F36F C9 1B | CMP #1B
0536 F371 F0 07 | BEQ yesGo
0537 F373 20 56 F3 | JSR UnLockTransmit
0538 F376 FA |noGo PLX
0539 F377 A9 00 | LDA #FALSE
0540 F379 60 | RTS
0541 F37A FA |yesGo PLX
0542 F37B A9 01 | LDA #TRUE
0543 F37D 60 | RTS
0544 |*
0545 |* Set Baud Rate of 2651 Uart chip
0546 |*
0547 F37E A9 CE |SetBaud LDA #MODE1
0548 F380 8D 32 04 | STA ModeReg1
0549 F383 AD 24 02 | LDA BaudRate
0550 F386 8D 32 04 | STA ModeReg2
0551 F389 60 | RTS 0552 |*
0553 F38A A9 3F |InitUart LDA #3F 19,200 Baud Regular
0554 F38C 8D 24 02 | STA BaudRate
0555 F38F 20 7E F3 | JSR SetBaud
0556 F392 A9 05 | LDA #ENABLE
0557 F394 8D 33 04 | STA CmdReg
0558 F397 AD 30 04 | LDA RcvrReg
0559 F39A 60 | RTS
0560 |*
0561 F39B A9 00 |InitCkSum LDA #0 PROCEDURE InitCkSum;
0562 F39D 85 BE | STA Checksum
0563 F39F 85 BF | STA Checksum+1
0564 F3A1 60 | RTS
0565 |* Enter with num to be added in Accum
0566 F3A2 18 |CheckSumAdd CLC
0567 F3A3 65 BE | ADC Checksum
0568 F3A5 85 BE | STA Checksum
0569 F3A7 90 02 | BCC skipRdInc
0570 F3A9 E6 BF | INC Checksum+1
0571 F3AB 60 |skipRdInc RTS
0572 |*
0573 |* Calculate Checksum of buffer
0574 |*
0575 F3AC 20 9B F3 |CheckSum JSR InitCkSum
0576 F3AF 20 8B FA | JSR ResetBuffer Pointers Forward Reference FW
0577 F3B2 20 1E FA | JSR GenEndAdr
0578 F3B5 B1 E0 |csLup LDA (BufferPointer1),Y
0579 F3B7 20 A2 F3 | JSR CheckSumAdd
0580 F3BA 20 EC FA | JSR CkEndOfBuffer
0581 F3BD F0 F6 | BEQ csLup
0582 F3BF 20 AA F5 | JSR WriteString FW
0583 F3C2 8D 43 68 | RASZ 'Checksum= '
0583 F3C5 65 63 6B |
0583 F3C8 73 75 6D |
0583 F3CB 3D 20 00 |
0584 F3CE A9 BE | LDA #Checksum
0585 F3D0 20 4C F7 | JSR PrintWord in Hex, JSR WriteCard for Dec
0586 F3D3 60 | RTS
0587 |*
0588 F3D4 29 0F |SetOutput AND #0F

µCEL TM Copyright c 1992 – JComm LAB 68

68

Experimenting With Embedded ControlControl

0589 F3D6 8D 34 02 | STA OutputDest
0590 F3D9 60 | RTS
0591 |*
0592 F3DA 29 0F |SetInput AND #0F
0593 F3DC 8D 31 02 | STA InputDest
0594 F3DF 60 | RTS
0595 |*
0596 |* Set Input/Output Devices for GetInput & SendOutput
0597 |* PROCEDURES
0598 F3E0 8D 32 02 |SetInOut STA IOState
0599 F3E3 20 D4 F3 | JSR SetOutput
0600 F3E6 AD 32 02 | LDA IOState
0601 F3E9 4A | LSR
0602 F3EA 4A | LSR
0603 F3EB 4A | LSR
0604 F3EC 4A | LSR
0605 F3ED 20 DA F3 | JSR SetInput
0606 F3F0 60 | RTS
0607 |*
0608 |* Example:
0609 |*
0610 F3F1 A9 77 |SetIOToRS232 LDA #InRSOutRS
0611 F3F3 20 E0 F3 | JSR SetInOut
0612 F3F6 60 | RTS
0613 |*
0614 F3F7 A9 73 |SetIOToRSInUser1Out LDA #InRSOutUser1
0615 F3F9 20 E0 F3 | JSR SetInOut
0616 F3FC 60 | RTS
0617 |*
0618 |* Single input routine,enter w/bit in Accum,
0619 |* RETURN BOOLEAN in Accum
0620 |*
0621 F3FD 5A |GetSingleInput PHY
0622 F3FE A8 | TAY
0623 F3FF B9 20 04 | LDA SingleInput,Y
0624 F402 30 04 | BMI singleInTrue
0625 F404 A9 00 | LDA #FALSE BOOLEAN value if bit is 0
0626 F406 7A | PLY
0627 F407 60 | RTS
0628 F408 A9 01 |singleInTrue LDA #TRUE BOOLEAN value if bit is 1
0629 F40A 7A | PLY
0630 F40B 60 | RTS
0631 |*
0632 F40C A2 08 |SInputByte LDX #8
0633 F40E A0 07 | LDY #7
0634 F410 64 FD | STZ TempLoc
0635 F412 B9 20 04 |inByteLup LDA SingleInput,Y
0636 F415 2A | ROL
0637 F416 26 FD | ROL TempLoc
0638 F418 88 |sibCkOut DEY
0639 F419 CA | DEX
0640 F41A D0 F6 | BNE inByteLup
0641 F41C A5 FD | LDA TempLoc
0642 F41E 60 | RTS
0643 F41F 38 |rolInPos SEC
0644 F420 26 FD | ROL TempLoc
0645 F422 80 F4 | BRA sibCkOut
0646 |*
0647 |* Redirectable Input Routines

µCEL TM Copyright c 1992 – JComm LAB 69

69

Experimenting With Embedded ControlControl

0648 |*
0649 F424 6C F0 00 |UserIn1 JMP (UserInput1)
0650 F427 6C F2 00 |UserIn2 JMP (UserInput2)
0651 F42A 6C F4 00 |KeyIn JMP (KeyboardIn)
0652 |*
0653 |*Generalized Byte-wide input with Re-direction
0654 |*PROCEDURE GetInput(VAR HoldAByte:CHAR;Input Dest:I/O);
0655 |*
0656 F42D AD 31 02 |GetInput LDA InputDest
0657 F430 C9 00 | CMP #MEMORY1
0658 F432 F0 1E | BEQ GetMem1
0659 F434 C9 01 | CMP #MEMORY2
0660 F436 F0 1F | BEQ GetMem2
0661 F438 C9 02 | CMP #SINGLEBYTE
0662 F43A F0 20 | BEQ GetByteIn
0663 F43C C9 03 | CMP #USER1
0664 F43E F0 22 | BEQ GetUser1
0665 F440 C9 04 | CMP #USER2
0666 F442 F0 22 | BEQ GetUser2
0667 F444 C9 06 | CMP #KEYBOARD
0668 F446 F0 22 | BEQ GetKeyIn
0669 F448 C9 07 | CMP #RS232
0670 F44A F0 22 | BEQ GetRS232
0671 F44C A9 49 | LDA #'I'
0672 F44E 8D 2F 02 | STA ErrorMsg
0673 F451 60 | RTS
0674 F452 B1 E0 |GetMem1 LDA (BufferPointer1),Y
0675 F454 85 FC | STA HoldAByte
0676 F456 60 | RTS
0677 F457 B1 E2 |GetMem2 LDA (BufferPointer2),Y
0678 F459 85 FC | STA HoldAByte
0679 F45B 60 | RTS
0680 F45C 20 0C F4 |GetByteIn JSR SInputByte
0681 F45F 85 FC | STA HoldAByte
0682 F461 60 | RTS
0683 F462 20 24 F4 |GetUser1 JSR UserIn1
0684 F465 60 | RTS
0685 F466 20 27 F4 |GetUser2 JSR UserIn2
0686 F469 60 | RTS
0687 F46A 20 2A F4 |GetKeyIn JSR KeyIn
0688 F46D 60 | RTS
0689 F46E 20 3B F3 |GetRS232 JSR ReadRS232
0690 F471 60 | RTS
0691 |*
0692 |* Single Output
0693 |*
0694 F472 5A |AssertSingleOut PHY
0695 F473 A8 | TAY
0696 F474 B9 10 04 | LDA SingleOutput,Y
0697 F477 7A | PLY
0698 F478 60 | RTS
0699 |*
0700 F479 8A |TurnBitOff TXA
0701 F47A 20 72 F4 |SOutOff JSR AssertSingleOut
0702 F47D 60 | RTS
0703 |*
0704 F47E 8A |TurnBitOn TXA
0705 F47F 18 |SOutOn CLC
0706 F480 69 08 | ADC #8

µCEL TM Copyright c 1992 – JComm LAB 70

70

Experimenting With Embedded ControlControl

0707 F482 20 72 F4 | JSR AssertSingleOut
0708 F485 60 | RTS
0709 |*
0710 F486 85 FC |SOutputByte STA HoldAByte
0711 F488 DA | PHX
0712 F489 5A | PHY
0713 F48A A2 07 | LDX #7
0714 F48C A0 08 | LDY #8
0715 F48E A5 FC |byteLup LDA HoldAByte
0716 F490 2A | ROL
0717 F491 85 FC | STA HoldAByte
0718 F493 B0 0B | BCS turnBitOn
0719 F495 20 79 F4 | JSR TurnBitOff
0720 F498 CA |innrLup DEX
0721 F499 88 | DEY
0722 F49A D0 F2 | BNE byteLup
0723 F49C 2A | ROL
0724 F49D 7A | PLY
0725 F49E FA | PLX
0726 F49F 60 | RTS
0727 F4A0 20 7E F4 |turnBitOn JSR TurnBitOn
0728 F4A3 80 F3 | BRA innrLup
0729 |*
0730 |* Redirectable Output Routines
0731 |*
0732 F4A5 6C F6 00 |UserOut1 JMP (UserOutput1)
0733 F4A8 6C F8 00 |UserOut2 JMP (UserOutput2)
0734 F4AB 6C FA 00 |ScreenOut JMP (Screen)
0735 |*
0736 |* Generalized Output with Re-direction
0737 |* PROCEDURE SendOutput(HoldAByte:C HAR;Output Dest:I/O);
0738 |*
0739 F4AE AD 34 02 |SendOutput LDA OutputDest
0740 F4B1 C9 00 | CMP #MEMORY1
0741 F4B3 F0 1E | BEQ SendMem1
0742 F4B5 C9 01 | CMP #MEMORY2
0743 F4B7 F0 1F | BEQ SendMem2
0744 F4B9 C9 02 | CMP #SINGLEBYTE
0745 F4BB F0 20 | BEQ SendByte
0746 F4BD C9 03 | CMP #USER1
0747 F4BF F0 22 | BEQ SendUser1
0748 F4C1 C9 04 | CMP #USER2
0749 F4C3 F0 22 | BEQ SendUser2
0750 F4C5 C9 05 | CMP #SCREEN
0751 F4C7 F0 22 | BEQ SendScreen
0752 F4C9 C9 07 | CMP #RS232
0753 F4CB F0 22 | BEQ SendRS232
0754 F4CD A9 4F | LDA #'O'
0755 F4CF 8D 2F 02 | STA ErrorMsg
0756 F4D2 60 | RTS
0757 F4D3 A5 FC |SendMem1 LDA HoldAByte
0758 F4D5 91 E0 | STA (BufferPointer1),Y
0759 F4D7 60 | RTS
0760 F4D8 A5 FC |SendMem2 LDA HoldAByte
0761 F4DA 91 E2 | STA (BufferPointer2),Y
0762 F4DC 60 | RTS
0763 F4DD A5 FC |SendByte LDA HoldAByte
0764 F4DF 20 86 F4 | JSR SOutputByte
0765 F4E2 60 | RTS

µCEL TM Copyright c 1992 – JComm LAB 71

71

Experimenting With Embedded ControlControl

0766 F4E3 20 A5 F4 |SendUser1 JSR UserOut1
0767 F4E6 60 | RTS
0768 F4E7 20 A8 F4 |SendUser2 JSR UserOut2
0769 F4EA 60 | RTS
0770 F4EB 20 AB F4 |SendScreen JSR ScreenOut
0771 F4EE 60 | RTS
0772 F4EF 20 43 F3 |SendRS232 JSR WriteRS232
0773 F4F2 60 | RTS
0774 |*
0775 F4F3 20 2D F4 |Wait4Char JSR GetInput
0776 F4F6 A5 FC | LDA HoldAByte
0777 F4F8 29 7F | AND #7F
0778 F4FA CD 33 02 | CMP Key
0779 F4FD F0 02 | BEQ wOut
0780 F4FF D0 F2 | BNE Wait4Char
0781 F501 60 |wOut RTS
0782 |*
0783 F502 AD 33 02 |Wait4Space LDA Key
0784 F505 48 | PHA
0785 F506 A9 20 | LDA #' '
0786 F508 8D 33 02 | STA Key
0787 F50B 20 F3 F4 | JSR Wait4Char
0788 F50E 68 | PLA
0789 F50F 8D 33 02 | STA Key
0790 F512 60 | RTS
0791 |*
0792 |* Pass Ascii byte in ACCumulator.
0793 |* RETURN TRUE IF =Space,CReturn,OR Y
0794 |*
0795 F513 29 7F |SCROrYesCk AND #7F
0796 F515 C9 59 | CMP #'Y'
0797 F517 F0 0F | BEQ scr1
0798 F519 C9 79 | CMP #'y'
0799 F51B F0 0B | BEQ scr1
0800 F51D C9 0D | CMP #CReturn
0801 F51F F0 07 | BEQ scr1
0802 F521 C9 20 | CMP #Space
0803 F523 F0 03 | BEQ scr1
0804 F525 A9 00 | LDA #FALSE
0805 F527 60 | RTS
0806 F528 A9 01 |scr1 LDA #TRUE
0807 F52A 60 | RTS
0808 |*
0809 F52B A9 00 |DisableXOnHandShake LDA #FALSE
0810 F52D 8D 23 02 | STA XOnFlag
0811 F530 60 | RTS
0812 |*
0813 F531 A9 01 |EnableXOnHandShake LDA #TRUE
0814 F533 8D 23 02 | STA XOnFlag
0815 F536 60 | RTS
0816 |*
0817 |* Use "GetInput" to Rcv an 'XOn'
0818 |* PROCEDURE ReadChar(VAR HoldAByte:CHAR);
0819 |*
0820 F537 20 2D F4 |ReadChar JSR GetInput
0821 F53A A5 FC | LDA HoldAByte
0822 F53C 29 7F | AND #7F
0823 F53E C9 14 | CMP #XOn
0824 F540 F0 F5 | BEQ ReadChar ignore XOn chars from JTerm-inal

µCEL TM Copyright c 1992 – JComm LAB 72

72

Experimenting With Embedded ControlControl

0825 F542 85 FC | STA HoldAByte
0826 F544 60 | RTS
0827 |*
0828 |*Send one char to output device. May create erratic behavior
0829 |*on non Ascii chars, when sending to a terminal.
0830 |* PROCEDURE WriteChar(Acc:CHAR;XO nFlag:BOOLEAN);
0831 |*
0832 F545 48 |WriteChar PHA
0833 F546 AD 23 02 | LDA XOnFlag
0834 F549 F0 03 | BEQ wchSkip If handshake on
0835 F54B 20 F3 F4 | JSR Wait4Char THEN wait for XOn char
0836 F54E 68 |wchSkip PLA ELSE don't
0837 F54F 85 FC | STA HoldAByte END;
0838 F551 20 AE F4 | JSR SendOutput
0839 F554 A5 FC | LDA HoldAByte
0840 F556 60 | RTS
0841 |*
0842 |* Wait for an Esc or a SpaceBar
0843 |*
0844 F557 20 37 F5 |SpaceEscWait JSR ReadChar
0845 F55A C9 1B | CMP #Escape
0846 F55C F0 04 | BEQ tSkp
0847 F55E C9 20 | CMP #Space
0848 F560 D0 F5 | BNE SpaceEscWait
0849 F562 60 |tSkp RTS
0850 |*
0851 |* Enter w/char in 'Acc' & # of chars in 'X'
0852 |*
0853 F563 20 45 F5 |SendChars JSR WriteChar
0854 F566 CA | DEX
0855 F567 D0 FA | BNE SendChars
0856 F569 60 | RTS
0857 |*
0858 |* Send Carriage Return
0859 F56A A9 0D |WriteLn LDA #CReturn
0860 F56C 20 45 F5 | JSR WriteChar
0861 F56F 60 | RTS
0862 |*
0863 |* Send CR LineFeed
0864 |*
0865 F570 20 6A F5 |SendCRLF JSR WriteLn
0866 F573 A9 0A |SendLNFD LDA #LineFeed
0867 F575 20 45 F5 | JSR WriteChar
0868 F578 60 | RTS
0869 |*
0870 F579 A9 03 |ReleaseHost LDA #ControlC
0871 F57B 20 45 F5 | JSR WriteChar
0872 F57E 60 | RTS
0873 |*
0874 |* Clear dumb terminal screen
0875 |*
0876 F57F A9 1A |ClearScreen LDA #ControlZ
0877 F581 85 FC | STA HoldAByte
0878 F583 20 43 F3 | JSR WriteRS232
0879 F586 60 | RTS
0880 |*
0881 F587 48 |SendABarSave PHA
0882 F588 A9 7C | LDA #'|'
0883 F58A 20 45 F5 | JSR WriteChar

µCEL TM Copyright c 1992 – JComm LAB 73

73

Experimenting With Embedded ControlControl

0884 F58D 68 | PLA
0885 F58E 60 | RTS
0886 |*
0887 F58F A9 2D |SendADash LDA #'-'
0888 F591 20 45 F5 | JSR WriteChar
0889 F594 60 | RTS
0890 |*
0891 F595 A9 20 |SendASpace LDA #' '
0892 F597 20 45 F5 | JSR WriteChar
0893 F59A 60 | RTS
0894 |*
0895 F59B A2 03 |Send3Spaces LDX #3
0896 F59D A9 20 | LDA #Space
0897 F59F 20 63 F5 | JSR SendChars
0898 F5A2 60 | RTS
0899 |*
0900 |* Initialize dumb terminal
0901 |*
0902 F5A3 20 8A F3 |InitTerminal JSR InitUart
0903 F5A6 20 7F F5 | JSR ClearScreen
0904 F5A9 60 | RTS
0905 |*
0906 |* Send message string to Currently Installed Output Device
0907 |* CIOD. Weird results if you forget 0
0908 |* at end of your string! See PrintID
0909 |* PROCEDURE WriteString(str:ARRAY OF CHAR);
0910 |*
0911 F5AA 68 |WriteString PLA pull Pgm Counter Lo off stack
0912 F5AB 85 EA | STA TempBufferPtr
0913 F5AD 68 | PLA pull Pgm Counter Hi off stack
0914 F5AE 85 EB | STA TempBufferPtr+1
0915 F5B0 5A | PHY save Y reg
0916 F5B1 A0 00 | LDY #0
0917 F5B3 E6 EA |loopR INC TempBufferPtr Inc PC lo
0918 F5B5 D0 02 | BNE skipAdr
0919 F5B7 E6 EB | INC TempBufferPtr+1 Inc PC hi
0920 F5B9 B1 EA |skipAdr LDA (TempBufferPtr),Y
0921 F5BB F0 07 | BEQ msgRTS hex 0 ends procedure
0922 F5BD 20 45 F5 | JSR WriteChar send char out
0923 F5C0 A9 01 | LDA #1
0924 F5C2 D0 EF | BNE loopR
0925 F5C4 7A |msgRTS PLY restore Y reg
0926 F5C5 A5 EB | LDA TempBufferPtr+1 restore altered Program
0927 F5C7 48 | PHA Counter to CPU Stack
0928 F5C8 A5 EA | LDA TempBufferPtr
0929 F5CA 48 | PHA
0930 F5CB 60 | RTS
0931 |*
0932 F5CC 20 AA F5 |PrintId JSR WriteString
0933 F5CF 8D 4A 43 | RASZ 'JComm LAB uCEL(TM) XaMonV4B-1'
0933 F5D2 6F 6D 6D |
0933 F5D5 20 4C 41 |
0933 F5D8 42 20 75 |
0933 F5DB 43 45 4C |
0933 F5DE 28 54 4D |
0933 F5E1 29 20 58 | 0933 F5E4 61 4D 6F |
0933 F5E7 6E 56 34 | 0933 F5EA 42 2D 31 |
0933 F5ED 00 | 0934 F5EE 60 | RTS
0935 |*

µCEL TM Copyright c 1992 – JComm LAB 74

74

Experimenting With Embedded ControlControl

0936 F5EF 20 AA F5 |DoneMessage JSR WriteString
0937 F5F2 8D 44 6F | RASZ 'Done'
0937 F5F5 6E 65 00 |
0938 F5F8 60 | RTS
0939 |*
0940 F5F9 20 AA F5 |PressSpaceBarMsg JSR WriteString
0941 F5FC 8D 50 72 | RASZ 'Press Space Key'
0941 F5FF 65 73 73 |
0941 F602 20 53 70 |
0941 F605 61 63 65 |
0941 F608 20 4B 65 |
0941 F60B 79 00 |
0942 F60D 60 | RTS
0943 |*
0944 F60E 20 AA F5 |GetYResponse JSR WriteString
0945 F611 28 79 65 | ASZ '(yes)'
0945 F614 73 29 00 |
0946 F617 20 37 F5 | JSR ReadChar
0947 F61A 20 13 F5 | JSR SCROrYesCk
0948 F61D 20 E1 F1 | JSR Push
0949 F620 D0 09 | BNE yesMsg
0950 F622 A9 6E |noMg LDA #'n'
0951 F624 20 45 F5 | JSR WriteChar
0952 F627 20 F0 F1 | JSR Pop
0953 F62A 60 | RTS
0954 F62B A9 79 |yesMsg LDA #'y'
0955 F62D 20 45 F5 | JSR WriteChar
0956 F630 20 F0 F1 | JSR Pop
0957 F633 60 | RTS
0958 |*
0959 F634 20 AA F5 |GetNoResponse JSR WriteString
0960 F637 28 6E 6F | ASZ '(no)'
0960 F63A 29 00 |
0961 F63C 20 37 F5 | JSR ReadChar
0962 F63F 20 A3 F6 | JSR LwrCase2UprCAsc
0963 F642 C9 59 | CMP #'Y'
0964 F644 F0 08 | BEQ neg
0965 F646 A9 6E |pos LDA #'n'
0966 F648 20 45 F5 | JSR WriteChar
0967 F64B A9 01 | LDA #TRUE
0968 F64D 60 | RTS
0969 F64E A9 79 |neg LDA #'y'
0970 F650 20 45 F5 | JSR WriteChar
0971 F653 A9 00 | LDA #FALSE
0972 F655 60 | RTS
0973 |*
0974 |* Definitions:
0975 |*Ascii char :A 1-byte code that represents a CHARacter
0976 |*AlphaAscii :Printable alphabetic Ascii character 'A'..'Z'
0977 |*NumAscii :Printable numeric Ascii character '0'..'9'
0978 |*AlphaNumAsc:An AlphaAscii or NumAscii character
0979 |*CntrlAscii :Non-printable ascii chars EX: 'escape' = 1BH
0980 |*OtherAscii :A printable nonAlphaNumeric ascii character
0981 |*HexAscii :AlphaNumAsc within range '0'..'9' or 'A'..'F'
0982 |*Hex Nibble :Representation of a 4-bit binary value, range
0983 |* 0 - F. EX: 0111B(binary) = 7H(hex)
0984 |*Hex Byte :Representation of an 8-bit binary value, range
0985 |* 00 - FF. EX: 00000111B = 07H (BYTE=CHAR)
0986 |*

µCEL TM Copyright c 1992 – JComm LAB 75

75

Experimenting With Embedded ControlControl

0987 |*Enter w/ Acc=char, RETURN TRUE in Acc IF NumAscii
0988 |*
0989 F656 29 7F |IsItAscii09 AND #7F
0990 F658 C9 30 | CMP #'0' Is data < '0' ?
0991 F65A 90 04 | BCC not09 Yes, so RETURN FALSE & quit
0992 F65C C9 3A | CMP #':' Is data < ':' ?
0993 F65E 90 03 | BCC is09 Yes,so it is within Ascii '0'..'9'
0994 F660 A9 00 |not09 LDA #FALSE RETURN Acc:= 0
0995 F662 60 | RTS
0996 F663 A9 01 |is09 LDA #TRUE RETURN Acc:= 1
0997 F665 60 | RTS
0998 |*
0999 |*Enter w/ Acc=char,RETURN TRUE in Acc IF AlphaAscii 'A'..'F'
1000 |*
1001 F666 29 7F |IsItAsciiAF AND #7F
1002 F668 C9 41 | CMP #'A'
1003 F66A 90 04 | BCC notAF PROCEDURE IsItAsciiAF(Acc:CHAR):BOOLEAN;
1004 F66C C9 47 | CMP #'G' BEGIN
1005 F66E 90 03 | BCC isAF ForceBit8ToZero;
1006 F670 A9 00 |notAF LDA #FALSE IF char < 'A' THEN RETURN FALSE; END;
1007 F672 60 | RTS IF char < 'G' THEN RETURN TRUE; END;
1008 F673 A9 01 |isAF LDA #TRUE END IsItAsciiAF;
1009 F675 60 | RTS
1010 |*
1011 |*Enter w/ Acc=char, RETURN TRUE in Acc IF HexAscii
1012 |*
1013 F676 48 |IsItAscii0F PHA
1014 F677 20 56 F6 | JSR IsItAscii09
1015 F67A D0 09 | BNE itIs
1016 F67C 68 | PLA
1017 F67D 20 66 F6 | JSR IsItAsciiAF
1018 F680 D0 04 | BNE itIsB
1019 F682 A9 00 | LDA #FALSE
1020 F684 60 | RTS
1021 F685 68 |itIs PLA
1022 F686 A9 01 |itIsB LDA #TRUE RETURN A '1' IF Ascii
1023 F688 60 | RTS between '0'..'F'
1024 |*
1025 |*Enter w/ Acc=char, RETURN TRUE IF printable Ascii CHAR
1026 |*
1027 F689 C9 1F |IsItAscii CMP #1F
1028 F68B F0 13 | BEQ notPrintable
1029 F68D 90 11 | BCC notPrintable <SPACE?
1030 F68F C9 7F | CMP #7F
1031 F691 90 0A | BCC yesPrintable <DEL?
1032 F693 C9 9F | CMP #9F
1033 F695 F0 09 | BEQ notPrintable
1034 F697 90 07 | BCC notPrintable <SPACE?
1035 F699 C9 FF | CMP #0FF
1036 F69B F0 03 | BEQ notPrintable
1037 F69D A9 01 |yesPrintable LDA #TRUE
1038 F69F 60 | RTS
1039 F6A0 A9 00 |notPrintable LDA #FALSE
1040 F6A2 60 | RTS
1041 |*
1042 |*Convert lower case AlphaAscii to upper case
1043 |*
1044 F6A3 C9 61 |LwrCase2UprCAsc CMP #'a' IF ACC <Ascii 'a'?
1045 F6A5 90 07 | BCC lcOut THEN do nothing

µCEL TM Copyright c 1992 – JComm LAB 76

76

Experimenting With Embedded ControlControl

1046 F6A7 C9 7B | CMP #'z'+1
1047 F6A9 B0 03 | BCS lcOut IF ACC < 'z'
1048 F6AB 38 | SEC
1049 F6AC E9 20 | SBC #20 THEN convert to Upr case
1050 F6AE 60 |lcOut RTS
1051 |*
1052 |*Enter w/ Acc=HexAscii, RETURN lower HEX Nibble IN Acc
1053 |*
1054 F6AF 48 |HexAsciiToHexNibble PHA
1055 F6B0 20 56 F6 | JSR IsItAscii09
1056 F6B3 D0 09 | BNE ascMask1
1057 F6B5 68 | PLA
1058 F6B6 48 | PHA
1059 F6B7 20 66 F6 | JSR IsItAsciiAF
1060 F6BA D0 06 | BNE ascMask2
1061 F6BC 68 | PLA
1062 F6BD 60 | RTS
1063 F6BE 68 |ascMask1 PLA
1064 F6BF 29 0F | AND #0F
1065 F6C1 60 | RTS
1066 F6C2 68 |ascMask2 PLA
1067 F6C3 29 0F | AND #0F
1068 F6C5 18 | CLC
1069 F6C6 69 09 | ADC #09
1070 F6C8 60 | RTS
1071 |*
1072 |*Enter w/Acc=lower Hex Nibble, RETURN HexAscii in Acc
1073 |*
1074 F6C9 29 0F |HexNibbleToHexAscii AND #0F
1075 F6CB C9 0A | CMP #0A
1076 F6CD 90 06 | BCC hexUP YES,0-9
1077 F6CF E9 09 | SBC #09 NO,IT'S A-F
1078 F6D1 18 | CLC
1079 F6D2 69 40 | ADC #'@'
1080 F6D4 60 | RTS
1081 F6D5 18 |hexUP CLC
1082 F6D6 69 30 | ADC #'0'
1083 F6D8 60 | RTS
1084 |*
1085 |* RETURN a NumAscii char '0'..'9' via HoldAByte and Acc
1086 |* filter out all other chars
1087 |*
1088 F6D9 20 37 F5 |GetAsciiNumber JSR ReadChar
1089 F6DC 20 56 F6 | JSR IsItAscii09
1090 F6DF F0 F8 | BEQ GetAsciiNumber
1091 F6E1 A5 FC | LDA HoldAByte
1092 F6E3 60 | RTS
1093 |*
1094 |* RETURN a HexAscii char via HoldAByte and Acc,
1095 |* filter out all other chars
1096 |*
1097 F6E4 20 37 F5 |GetHexAscii JSR ReadChar
1098 F6E7 20 76 F6 | JSR IsItAscii0F
1099 F6EA F0 F8 | BEQ GetHexAscii
1100 F6EC A5 FC | LDA HoldAByte
1101 F6EE 60 | RTS
1102 |*
1103 F6EF 20 D9 F6 |GetSingleHexNum JSR GetAsciiNumber
1104 F6F2 20 1D F7 | JSR PrintByte

µCEL TM Copyright c 1992 – JComm LAB 77

77

Experimenting With Embedded ControlControl

1105 F6F5 20 AF F6 | JSR HexAsciiToHexNibble FR
1106 F6F8 48 | PHA
1107 F6F9 20 95 F5 | JSR SendASpace
1108 F6FC 68 | PLA
1109 F6FD 60 | RTS
1110 |*
1111 |* get 2 HexAscii chars, RETURN w/Acc=Hex Byte
1112 |*
1113 F6FE 20 E4 F6 |GetHexByte JSR GetHexAscii
1114 F701 20 45 F5 | JSR WriteChar
1115 F704 20 AF F6 | JSR HexAsciiToHexNibble
1116 F707 48 | PHA Hi hex nibble
1117 F708 20 E4 F6 | JSR GetHexAscii
1118 F70B 20 45 F5 | JSR WriteChar
1119 F70E 20 AF F6 | JSR HexAsciiToHexNibble
1120 F711 85 FC | STA HoldAByte Lo hex nibble
1121 F713 68 | PLA
1122 F714 0A | ASL
1123 F715 0A | ASL
1124 F716 0A | ASL
1125 F717 0A | ASL
1126 F718 05 FC | ORA HoldAByte
1127 F71A 85 FC | STA HoldAByte
1128 F71C 60 | RTS
1129 |*
1130 |*Enter w/Acc=Hex Byte, send out 2 HexAscii chars to CIOD
1131 |*
1132 F71D 48 |PrintByte PHA
1133 F71E 29 F0 | AND #0F0
1134 F720 4A | LSR
1135 F721 4A | LSR
1136 F722 4A | LSR
1137 F723 4A | LSR
1138 F724 20 C9 F6 | JSR HexNibbleToHexAscii
1139 F727 20 45 F5 | JSR WriteChar
1140 F72A 68 | PLA
1141 F72B 20 C9 F6 |PrintNibl JSR HexNibbleToHexAscii Enter w/Acc=Hex Nibble
1142 F72E 20 45 F5 | JSR WriteChar Send out ascii char, Acc OK
1143 F731 60 | RTS
1144 |*
1145 |*Enter w/Acc=Hex Byte, send out 2 HexAscii, restore Acc
1146 |*
1147 F732 48 |PrintByteSave PHA
1148 F733 20 1D F7 | JSR PrintByte
1149 F736 68 | PLA
1150 F737 60 | RTS
1151 |*
1152 F738 85 E8 |GetZPWord STA TempPointer
1153 F73A 5A | PHY Save Y Reg
1154 F73B A0 00 | LDY #0 Y offset:=0
1155 F73D 84 E9 | STY TempPointer+1 High byte tempointer:=0
1156 F73F B1 E8 | LDA (TempPointer),Y
1157 F741 20 E1 F1 | JSR Push Save Low-byte 1
158 F744 C8 | INY
1159 F745 B1 E8 | LDA (TempPointer),Y
1160 F747 20 E1 F1 | JSR Push Save High-byte
1161 F74A 7A | PLY Restore Y Reg
1162 F74B 60 | RTS
1163 |*

µCEL TM Copyright c 1992 – JComm LAB 78

78

Experimenting With Embedded ControlControl

1164 |*Enter w/Acc=#low byte of zero page var, send out 4 HexAscii
1165 |*chars to CIOD
1166 F74C 20 38 F7 |PrintWord JSR GetZPWord
1167 F74F 20 F0 F1 | JSR Pop
1168 F752 20 1D F7 | JSR PrintByte Print High-byte
1169 F755 20 F0 F1 | JSR Pop
1170 F758 20 1D F7 | JSR PrintByte Print Low-byte
1171 F75B 60 | RTS
1172 |* Print current buffer address in Hex TCIOD
1173 F75C A9 E0 |PrintSBCAdrs LDA #BufferPointer1
1174 F75E 20 4C F7 | JSR PrintWord
1175 F761 60 | RTS
1176 |*
1177 |* This proc can be improved
1178 |*
1179 F762 EE 00 03 |IncCardNumber INC TempBuffer
1180 F765 AD 00 03 | LDA TempBuffer
1181 F768 C9 0A | CMP #0A
1182 F76A F0 01 | BEQ IncTens
1183 F76C 60 | RTS
1184 F76D A9 00 |IncTens LDA #0
1185 F76F 8D 00 03 | STA TempBuffer
1186 F772 EE 01 03 | INC TempBuffer+1
1187 F775 AD 01 03 | LDA TempBuffer+1
1188 F778 C9 0A | CMP #0A
1189 F77A F0 01 | BEQ IncHundreds
1190 F77C 60 | RTS
1191 F77D A9 00 |IncHundreds LDA #0
1192 F77F 8D 01 03 | STA TempBuffer+1
1193 F782 EE 02 03 | INC TempBuffer+2
1194 F785 AD 02 03 | LDA TempBuffer+2
1195 F788 C9 0A | CMP #0A
1196 F78A F0 01 | BEQ IncThousands
1197 F78C 60 | RTS
1198 F78D A9 00 |IncThousands LDA #0
1199 F78F 8D 02 03 | STA TempBuffer+2
1200 F792 EE 03 03 | INC TempBuffer+3
1201 F795 AD 03 03 | LDA TempBuffer+3
1202 F798 C9 0A | CMP #0A
1203 F79A F0 01 | BEQ IncTenThou
1204 F79C 60 | RTS
1205 F79D A9 00 |IncTenThou LDA #0
1206 F79F 8D 03 03 | STA TempBuffer+3
1207 F7A2 EE 04 03 | INC TempBuffer+4
1208 F7A5 AD 04 03 | LDA TempBuffer+4
1209 F7A8 C9 0A | CMP #0A
1210 F7AA F0 01 | BEQ incErr
1211 F7AC 60 | RTS
1212 F7AD A9 00 |incErr LDA #0
1213 F7AF 8D 04 03 | STA TempBuffer+4
1214 F7B2 A9 4F | LDA #'O'
1215 F7B4 8D 05 03 | STA TempBuffer+5
1216 F7B7 60 | RTS
1217 |*
1218 F7B8 A0 05 |SkipLeadingZeroes LDY #5
1219 F7BA B1 EA |skipLZLup LDA (TempBufferPtr),Y
1220 F7BC F0 01 | BEQ decAndDo
1221 F7BE 60 | RTS
1222 F7BF 20 95 F5 |decAndDo JSR SendASpace

µCEL TM Copyright c 1992 – JComm LAB 79

79

Experimenting With Embedded ControlControl

1223 F7C2 88 | DEY
1224 F7C3 D0 F5 | BNE skipLZLup
1225 F7C5 60 | RTS
1226 |*
1227 F7C6 20 F1 FF |PrintCardArray JSR InitTempBuffer
1228 F7C9 20 B8 F7 | JSR SkipLeadingZeroes
1229 F7CC B1 EA |pcNumLup LDA (TempBufferPtr),Y
1230 F7CE 20 C9 F6 | JSR HexNibbleToHexAscii
1231 F7D1 20 45 F5 | JSR WriteChar
1232 F7D4 88 | DEY
1233 F7D5 10 F5 | BPL pcNumLup
1234 F7D7 60 | RTS
1235 |* Clear Temporary Buffer Locations
1236 F7D8 20 F1 FF |ClearTempBufLocs JSR InitTempBuffer
1237 F7DB A2 10 | LDX #10
1238 F7DD A0 00 | LDY #0
1239 F7DF 91 EA |clrTLup STA (TempBufferPtr),Y
1240 F7E1 C8 | INY
1241 F7E2 CA | DEX
1242 F7E3 D0 FA | BNE clrTLup
1243 F7E5 A0 00 | LDY #0
1244 F7E7 60 | RTS
1245 |*
1246 |*Enter w/ Acc=HEX Byte, output is ascii rep in Tempbuffer
1247 |*
1248 F7E8 F0 0B |CountByteDec BEQ cBOut
1249 F7EA 8D 25 02 | STA Count
1250 F7ED 20 62 F7 |pDecBLup JSR IncCardNumber
1251 F7F0 CE 25 02 | DEC Count
1252 F7F3 D0 F8 | BNE pDecBLup
1253 F7F5 60 |cBOut RTS
1254 |*
1255 F7F6 DA |WriteByteDec PHX
1256 F7F7 5A | PHY
1257 F7F8 48 | PHA
1258 F7F9 20 D8 F7 | JSR ClearTempBufLocs
1259 F7FC 68 | PLA
1260 F7FD 20 E8 F7 | JSR CountByteDec
1261 F800 20 C6 F7 | JSR PrintCardArray
1262 F803 7A | PLY
1263 F804 FA | PLX
1264 F805 60 | RTS
1265 |*
1266 |*Enter w/Acc= #zero page low Hex Byte, send out 16 bit card
1267 |*to CIOD
1268 F806 DA |WriteCard PHX PROCEDURE WriteCard(#ZeroPageVar) ;
1269 F807 5A | PHY
1270 F808 20 38 F7 | JSR GetZPWord
1271 F80B 20 F0 F1 | JSR Pop
1272 F80E 85 BD | STA TotalCount+1
1273 F810 20 F0 F1 | JSR Pop
1274 F813 85 BC | STA TotalCount
1275 F815 20 D8 F7 | JSR ClearTempBufLocs
1276 F818 A5 BD | LDA TotalCount+1
1277 F81A F0 29 | BEQ wcOutLo
1278 F81C A5 BC |wcLup LDA TotalCount
1279 F81E 38 | SEC
1280 F81F E9 0A | SBC #0A
1281 F821 85 BC | STA TotalCount

µCEL TM Copyright c 1992 – JComm LAB 80

80

Experimenting With Embedded ControlControl

1282 F823 08 | PHP
1283 F824 20 6D F7 | JSR IncTens
1284 F827 28 | PLP
1285 F828 B0 F2 | BCS wcLup
1286 F82A A5 BD | LDA TotalCount+1
1287 F82C 38 | SEC
1288 F82D E9 01 | SBC #1
1289 F82F 85 BD | STA TotalCount+1
1290 F831 08 | PHP
1291 F832 A5 BD | LDA TotalCount+1
1292 F834 F0 03 | BEQ wcLupOut
1293 F836 28 | PLP
1294 F837 B0 E3 | BCS wcLup
1295 F839 28 |wcLupOut PLP
1296 F83A A5 BC | LDA TotalCount
1297 F83C 20 E8 F7 | JSR CountByteDec
1298 F83F 20 C6 F7 | JSR PrintCardArray
1299 F842 7A | PLY
1300 F843 FA | PLX
1301 F844 60 | RTS
1302 F845 A5 BC |wcOutLo LDA TotalCount
1303 F847 20 F6 F7 | JSR WriteByteDec
1304 F84A 7A | PLY
1305 F84B FA | PLX
1306 F84C 60 | RTS
1307 |*
1308 F84D 20 AA F5 |HexToDecimal JSR WriteString
1309 F850 8D 48 65 | RASZ 'Hex to Dec> '
1309 F853 78 20 74 |
1309 F856 6F 20 44 |
1309 F859 65 63 3E |
1309 F85C 20 00 |
1310 F85E 20 FE F6 | JSR GetHexByte
1311 F861 85 BD | STA TotalCount+1
1312 F863 20 FE F6 | JSR GetHexByte
1313 F866 85 BC | STA TotalCount
1314 F868 A9 BC | LDA #TotalCount
1315 F86A 20 06 F8 | JSR WriteCard
1316 F86D 60 | RTS
1317 |*
1318 |* Send out last program counter reading
1319 |*
1320 F86E 20 AA F5 |PrintPC JSR WriteString
1321 F871 8D 50 43 | RASZ 'PC= '
1321 F874 3D 20 00 |
1322 F877 AD 2C 02 | LDA CPUPgmCounterHi
1323 F87A 20 1D F7 | JSR PrintByte PC hi
1324 F87D AD 2B 02 | LDA CPUPgmCounterLo
1325 F880 20 1D F7 | JSR PrintByte PC lo
1326 F883 60 | RTS
1327 |*
1328 |* Send out CPU's Registers
1329 |*
1330 F884 20 40 F2 |PrintRegs JSR SaveSXYAP
1331 F887 AD 21 02 | LDA TraceFlag
1332 F88A D0 04 | BNE pRegCont
1333 F88C 20 5C F2 | JSR RestoreSXYA
1334 F88F 60 | RTS
1335 F890 20 6E F8 |pRegCont JSR PrintPC

µCEL TM Copyright c 1992 – JComm LAB 81

81

Experimenting With Embedded ControlControl

1336 F893 20 AA F5 | JSR WriteString
1337 F896 20 20 53 | ASZ ' Stat= '
1337 F899 74 61 74 |
1337 F89C 3D 20 00 |
1338 F89F AD 2A 02 | LDA CPUStatusReg
1339 F8A2 20 1D F7 | JSR PrintByte
1340 F8A5 20 AA F5 | JSR WriteString
1341 F8A8 20 20 58 | ASZ ' X= '
1341 F8AB 3D 20 00 |
1342 F8AE AD 27 02 | LDA CPUXReg
1343 F8B1 20 1D F7 | JSR PrintByte
1344 F8B4 20 AA F5 | JSR WriteString
1345 F8B7 20 20 59 | ASZ ' Y= '
1345 F8BA 3D 20 00 |
1346 F8BD AD 28 02 | LDA CPUYReg
1347 F8C0 20 1D F7 | JSR PrintByte
1348 F8C3 20 AA F5 | JSR WriteString
1349 F8C6 20 20 41 | ASZ ' A= '
1349 F8C9 3D 20 00 |
1350 F8CC AD 29 02 | LDA CPUAccumulator
1351 F8CF 20 1D F7 | JSR PrintByte
1352 F8D2 20 AA F5 | JSR WriteString
1353 F8D5 20 20 54 | ASZ ' Trace = '
1353 F8D8 72 61 63 |
1353 F8DB 65 20 3D |
1353 F8DE 20 00 |
1354 F8E0 AD 37 02 | LDA TraceVar
1355 F8E3 20 1D F7 | JSR PrintByte
1356 F8E6 20 6A F5 | JSR WriteLn
1357 F8E9 20 5C F2 | JSR RestoreSXYA
1358 F8EC 60 | RTS
1359 |*
1360 F8ED AD 2A 02 |XaDebugRoutine LDA CPUStatusReg
1361 F8F0 48 | PHA
1362 F8F1 28 | PLP
1363 F8F2 20 5C F2 | JSR RestoreSXYA
1364 F8F5 20 84 F8 | JSR PrintRegs
1365 F8F8 20 40 F2 | JSR SaveSXYAP
1366 F8FB 20 AA F5 | JSR WriteString
1367 F8FE 8D 47 6F | RASZ 'Go to Monitor? '
1367 F901 20 74 6F |
1367 F904 20 4D 6F |
1367 F907 6E 69 74 |
1367 F90A 6F 72 3F |
1367 F90D 20 00 |
1368 F90F 20 34 F6 | JSR GetNoResponse
1369 F912 F0 01 | BEQ wayOut
1370 F914 60 | RTS
1371 F915 4C 8B FD |wayOut JMP cmdI
1372 |*
1373 F918 6C EE 00 |DebugRoutine JMP (Debug) init'ed w/addr of XaDebugRoutine
1374 |*
1375 |* RETURN TRUE in Acc if interrupt was a BRK, FALSE if IRQ
1376 |*
1377 F91B AD 2A 02 |IsItSWI LDA CPUStatusReg
1378 F91E 48 | PHA
1379 F91F 28 | PLP
1380 F920 29 10 | AND #BIT4 Brk flag set?
1381 F922 D0 03 | BNE itIsSWI

µCEL TM Copyright c 1992 – JComm LAB 82

82

Experimenting With Embedded ControlControl

1382 F924 A9 00 | LDA #FALSE No, it is an IRQ
1383 F926 60 | RTS
1384 F927 A9 01 |itIsSWI LDA #TRUE Yes, it is an BRK
1385 F929 60 | RTS
1386 |*
1387 F92A 20 40 F2 |NMIRoutine JSR SaveSXYAP
1388 F92D 68 | PLA
1389 F92E 8D 2A 02 | STA CPUStatusReg
1390 F931 68 | PLA
1391 F932 8D 2B 02 | STA CPUPgmCounterLo
1392 F935 68 | PLA
1393 F936 8D 2C 02 | STA CPUPgmCounterHi
1394 F939 20 F1 F3 | JSR SetIOToRS232
1395 F93C 20 6E F8 | JSR PrintPC
1396 F93F 20 F9 F5 | JSR PressSpaceBarMsg
1397 F942 20 02 F5 | JSR Wait4Space
1398 F945 4C 78 FD | JMP XaMonV4B
1399 |*
1400 F948 20 AA F5 |SWIRoutine JSR WriteString
1401 F94B 8D 53 57 | RASZ 'SWI Interrupt @ PC= '
1401 F94E 49 20 49 |
1401 F951 6E 74 65 |
1401 F954 72 72 75 |
1401 F957 70 74 20 |
1401 F95A 40 20 50 |
1401 F95D 43 3D 20 |
1401 F960 00 |
1402 F961 A5 EC | LDA UserPC adjust pc lo-2
1403 F963 38 | SEC
1404 F964 E9 02 | SBC #2
1405 F966 85 EC | STA UserPC
1406 F968 B0 02 | BCS swiSkip
1407 F96A C6 ED | DEC UserPC+1
1408 F96C A9 EC |swiSkip LDA #UserPC

1409 F96E 20 4C F7 | JSR PrintWord
1410 F971 AD 1E 02 | LDA DebugFlag
1411 F974 D0 03 | BNE doDebug BEQ intOut
1412 F976 4C 90 FF | JMP intOut unstructured EXIT
1413 F979 20 18 F9 |doDebug JSR DebugRoutine
1414 F97C 18 | CLC
1415 F97D A5 EC | LDA UserPC
1416 F97F 69 01 | ADC #1
1417 F981 85 EC | STA UserPC
1418 F983 90 02 | BCC swiSkip2
1419 F985 E6 ED | INC UserPC+1
1420 F987 A5 ED |swiSkip2 LDA UserPC+1
1421 F989 48 | PHA
1422 F98A A5 EC | LDA UserPC
1423 F98C 48 | PHA
1424 F98D AD 2A 02 | LDA CPUStatusReg push status reg
1425 F990 48 | PHA
1426 F991 20 5C F2 | JSR RestoreSXYA
1427 F994 40 | RTI
1428 |*
1429 |*Directs interrupt to software SWI or Hardware IRQ routine
1430 |*
1431 F995 20 40 F2 |SelectInterrupt JSR SaveSXYAP
1432 F998 68 | PLA

µCEL TM Copyright c 1992 – JComm LAB 83

83

Experimenting With Embedded ControlControl

1433 F999 8D 2A 02 | STA CPUStatusReg
1434 F99C 68 | PLA
1435 F99D 85 EC | STA UserPC
1436 F99F 68 | PLA
1437 F9A0 85 ED | STA UserPC+1
1438 F9A2 20 1B F9 | JSR IsItSWI
1439 F9A5 F0 03 | BEQ itsAnIRQ
1440 F9A7 4C 03 02 | JMP SWIService
1441 F9AA 4C 06 02 |itsAnIRQ JMP IRQService
1442 |*
1443 F9AD 20 AA F5 |ShowAllParameters JSR WriteString
1444 F9B0 8D 53 74 | RASZ 'StartAd= '
1444 F9B3 61 72 74 |
1444 F9B6 41 64 3D |
1444 F9B9 20 00 |
1445 F9BB 20 8B FA | JSR ResetBufferPointers is forward ref'ed
1446 F9BE 20 5C F7 | JSR PrintSBCAdrs
1447 F9C1 20 AA F5 | JSR WriteString
1448 F9C4 8D 42 79 | RASZ 'ByteCnt= '
1448 F9C7 74 65 43 |
1448 F9CA 6E 74 3D |
1448 F9CD 20 00 |
1449 F9CF AD 1C 02 | LDA ByteCount+1
1450 F9D2 20 1D F7 | JSR PrintByte
1451 F9D5 AD 1B 02 | LDA ByteCount
1452 F9D8 20 1D F7 | JSR PrintByte
1453 F9DB 60 | RTS
1454 |*
1455 F9DC 20 AA F5 |GetFillWP JSR WriteString WP=With Prompt
1456 F9DF 8D 45 6E | RASZ 'Enter Hex- '
1456 F9E2 74 65 72 |
1456 F9E5 20 48 65 |
1456 F9E8 78 2D 20 |
1456 F9EB 00 |
1457 |*
1458 F9EC 20 FE F6 |GetFillChr JSR GetHexByte
1459 F9EF 8D 30 02 | STA FillChar
1460 F9F2 60 | RTS
1461 |*
1462 |* get number of bytes
1463 F9F3 20 FE F6 |GetNumberOfBytes JSR GetHexByte
1464 F9F6 8D 1B 02 | STA ByteCount
1465 F9F9 60 | RTS
1466 |*
1467 F9FA 20 FE F6 |GetNumberOfPages JSR GetHexByte
1468 F9FD 8D 1C 02 | STA ByteCount+1
1469 FA00 60 | RTS
1470 |*
1471 FA01 20 FE F6 |GetStartAdr JSR GetHexByte
1472 FA04 8D 18 02 | STA StartOfBuffer1+1
1473 FA07 8D 38 02 | STA WarmStart
1474 FA0A 20 FE F6 | JSR GetHexByte
1475 FA0D 8D 17 02 | STA StartOfBuffer1
1476 FA10 60 | RTS
1477 |*
1478 FA11 20 FE F6 |GetDestAdr JSR GetHexByte
1479 FA14 8D 1A 02 | STA StartOfBuffer2+1
1480 FA17 20 FE F6 | JSR GetHexByte
1481 FA1A 8D 19 02 | STA StartOfBuffer2

µCEL TM Copyright c 1992 – JComm LAB 84

84

Experimenting With Embedded ControlControl

1482 FA1D 60 | RTS
1483 |*
1484 |* Given a byte count & a start ADDRESS, use
1485 |* current bytecount and bufferstart,to generate end Adr
1486 |*
1487 FA1E 18 |GenEndAdr CLC
1488 FA1F AD 1B 02 | LDA ByteCount
1489 FA22 6D 17 02 | ADC StartOfBuffer1
1490 FA25 8D 15 02 | STA BufferEnd
1491 FA28 AD 1C 02 | LDA ByteCount+1
1492 FA2B 6D 18 02 | ADC StartOfBuffer1+1
1493 FA2E 8D 16 02 | STA BufferEnd+1
1494 FA31 60 | RTS
1495 |*
1496 FA32 20 AA F5 |GetAddrWP JSR WriteString With Prompt
1497 FA35 8D 41 64 | RASZ 'Addr: '
1497 FA38 64 72 3A |
1497 FA3B 20 00 |
1498 FA3D 20 01 FA |GetAddress JSR GetStartAdr Without a prompt
1499 FA40 20 1E FA | JSR GenEndAdr
1500 FA43 60 | RTS
1501 |*
1502 FA44 20 AA F5 |GetDestAdWP JSR WriteString With Prompt
1503 FA47 8D 44 65 | RASZ 'Dest: '
1503 FA4A 73 74 3A |
1503 FA4D 20 00 |
1504 FA4F 20 11 FA |GetDestAddr JSR GetDestAdr Without prompt
1505 FA52 20 1E FA | JSR GenEndAdr
1506 FA55 60 | RTS
1507 |*
1508 FA56 20 AA F5 |GetBytCntWP JSR WriteString
1509 FA59 8D 23 42 | RASZ '#Bytes: '
1509 FA5C 79 74 65 |
1509 FA5F 73 3A 20 |
1509 FA62 00 |
1510 FA63 20 F3 F9 |GetByteCnt JSR GetNumberOfBytes
1511 FA66 20 1E FA | JSR GenEndAdr

1512 FA69 60 | RTS
1513 |*
1514 FA6A 20 AA F5 |GetPgCntWP JSR WriteString
1515 FA6D 8D 23 50 | RASZ '#Pages: '
1515 FA70 61 67 65 |
1515 FA73 73 3A 20 |
1515 FA76 00 |
1516 FA77 20 FA F9 |GetPageCnt JSR GetNumberOfPages
1517 FA7A 20 1E FA | JSR GenEndAdr
1518 FA7D 60 | RTS
1519 |*
1520 |* Get all parameters for buffer operations
1521 |*
1522 FA7E 20 32 FA |GetAllPar JSR GetAddrWP
1523 FA81 20 6A FA | JSR GetPgCntWP
1524 FA84 20 56 FA | JSR GetBytCntWP
1525 FA87 20 1E FA | JSR GenEndAdr
1526 FA8A 60 | RTS
1527 |*
1528 |* Restore buffer pointers
1529 |*

µCEL TM Copyright c 1992 – JComm LAB 85

85

Experimenting With Embedded ControlControl

1530 FA8B A0 00 |ResetBufferPointers LDY #0
1531 FA8D AD 1A 02 | LDA StartOfBuffer2+1
1532 FA90 85 E3 | STA BufferPointer2+1
1533 FA92 AD 19 02 | LDA StartOfBuffer2
1534 FA95 85 E2 | STA BufferPointer2
1535 FA97 AD 18 02 | LDA StartOfBuffer1+1
1536 FA9A 85 E1 | STA BufferPointer1+1
1537 FA9C AD 17 02 | LDA StartOfBuffer1
1538 FA9F 85 E0 | STA BufferPointer1
1539 FAA1 60 | RTS
1540 |*
1541 FAA2 AD 17 02 |SaveParams LDA StartOfBuffer1
1542 FAA5 20 E1 F1 | JSR Push
1543 FAA8 AD 18 02 | LDA StartOfBuffer1+1
1544 FAAB 20 E1 F1 | JSR Push
1545 FAAE AD 1B 02 | LDA ByteCount
1546 FAB1 20 E1 F1 | JSR Push
1547 FAB4 AD 1C 02 | LDA ByteCount+1
1548 FAB7 20 E1 F1 | JSR Push
1549 FABA AD 35 02 | LDA RomStart
1550 FABD 20 E1 F1 | JSR Push
1551 FAC0 AD 36 02 | LDA RomStart+1
1552 FAC3 20 E1 F1 | JSR Push
1553 FAC6 60 | RTS
1554 |*
1555 FAC7 20 F0 F1 |RestoreParams JSR Pop
1556 FACA 8D 36 02 | STA RomStart+1
1557 FACD 20 F0 F1 | JSR Pop
1558 FAD0 8D 35 02 | STA RomStart
1559 FAD3 20 F0 F1 | JSR Pop
1560 FAD6 8D 1C 02 | STA ByteCount+1
1561 FAD9 20 F0 F1 | JSR Pop
1562 FADC 8D 1B 02 | STA ByteCount
1563 FADF 20 F0 F1 | JSR Pop
1564 FAE2 8D 18 02 | STA StartOfBuffer1+1
1565 FAE5 20 F0 F1 | JSR Pop
1566 FAE8 8D 17 02 | STA StartOfBuffer1
1567 FAEB 60 | RTS
1568 |*
1569 |* Inc buffer pointers & Check for end-of-buffer.
1570 |* End = bufferEnd+1
1571 |*
1572 FAEC E6 E0 |CkEndOfBuffer INC BufferPointer1
1573 FAEE D0 02 | BNE ckSkip
1574 FAF0 E6 E1 |ckInc INC BufferPointer1+1
1575 FAF2 E6 E2 |ckSkip INC BufferPointer2
1576 FAF4 D0 02 | BNE Skip2
1577 FAF6 E6 E3 | INC BufferPointer2+1
1578 FAF8 A5 E0 |Skip2 LDA BufferPointer1
1579 FAFA CD 15 02 | CMP BufferEnd
1580 FAFD A5 E1 | LDA BufferPointer1+1
1581 FAFF ED 16 02 | SBC BufferEnd+1
1582 FB02 B0 03 | BCS ckOut
1583 FB04 A9 00 | LDA #FALSE RETURN a '0' IF NOT end of buffer
1584 FB06 60 | RTS
1585 FB07 A9 01 |ckOut LDA #TRUE RETURN a '1' IF end of buffer
1586 FB09 60 | RTS
1587 |*
1588 |* Get from input & send to output

µCEL TM Copyright c 1992 – JComm LAB 86

86

Experimenting With Embedded ControlControl

1589 |*
1590 FB0A 20 2D F4 |XferBuffer JSR GetInput
1591 FB0D 20 AE F4 | JSR SendOutput
1592 FB10 20 EC FA | JSR CkEndOfBuffer
1593 FB13 F0 F5 | BEQ XferBuffer
1594 FB15 60 | RTS
1595 |*
1596 |* By doing it this way, you only have to set # of bytes,
1597 |* pages, & starting address once.
1598 |* after, use ResetBufferPointers to reset the pointers
1599 |*
1600 |* SEQUENCE:1. Get start and/or dest addresses
1601 |* 2. Get page and byte count (ByteCount(Hi/Lo))
1602 |* 3. JSR GenEndAdr
1603 |* 4. JSR ResetBufferPointers
1604 |*
1605 |* As long as you haven't changed buffer address or bytecount
1606 |* New memory operations only require a call to
1607 |* ResetBufferPointers before going into a loop
1608 |*
1609 |* Hi-level block mem move
1610 |* Example of System CALL:
1611 |* Get Dest addr & CALL GenEndAdr BEFORE calling MoveMemory
1612 |* See CmdInterpreter (toward end of listing) for examples
1613 |*
1614 FB16 20 8B FA |MoveMemory JSR ResetBufferPointers
1615 FB19 20 0A FB | JSR XferBuffer
1616 FB1C 60 | RTS
1617 |*
1618 |*Send Hex Byte to output device; "bytecount" number of times
1619 |*
1620 FB1D 20 8B FA |FillMem JSR ResetBufferPointers Reset mem pointers
1621 FB20 AD 30 02 |fillLup LDA FillChar
1622 FB23 20 AE F4 | JSR SendOutput
1623 FB26 20 EC FA | JSR CkEndOfBuffer
1624 FB29 F0 F5 | BEQ fillLup
1625 FB2B 60 | RTS
1626 |*
1627 FB2C 20 DC F9 |FillRoutine JSR GetFillWP
1628 FB2F AD 34 02 | LDA OutputDest Save output direction
1629 FB32 48 | PHA
1630 FB33 A9 00 | LDA #MEMORY1
1631 FB35 20 D4 F3 | JSR SetOutput Change output to memory
1632 FB38 20 1D FB | JSR FillMem
1633 FB3B 68 | PLA
1634 FB3C 20 D4 F3 | JSR SetOutput Restore former output
1635 FB3F 60 | RTS direction
1636 |*
1637 FB40 20 A2 FA |ClearSBCRam JSR SaveParams
1638 FB43 20 7E FA | JSR GetAllPar
1639 FB46 20 2C FB | JSR FillRoutine
1640 FB49 20 C7 FA | JSR RestoreParams
1641 FB4C 20 EF F5 | JSR DoneMessage
1642 FB4F 60 | RTS
1643 |*
1644 |* Download from Input device into ram
1645 |*
1646 FB50 20 8B FA |DownLoad JSR ResetBufferPointers
1647 FB53 20 79 F5 | JSR ReleaseHost

µCEL TM Copyright c 1992 – JComm LAB 87

87

Experimenting With Embedded ControlControl

1648 FB56 20 2D F4 |downLup JSR GetInput
1649 FB59 A5 FC | LDA HoldAByte
1650 FB5B 91 E0 | STA (BufferPointer1),Y
1651 FB5D A9 14 | LDA #XOn 14h
1652 FB5F 20 45 F5 | JSR WriteChar
1653 FB62 20 EC FA | JSR CkEndOfBuffer
1654 FB65 F0 EF | BEQ downLup
1655 FB67 60 | RTS
1656 |*
1657 |* UpLoad FROM RAM TO output device
1658 |*
1659 FB68 20 8B FA |UpLoad JSR ResetBufferPointers
1660 FB6B 20 F3 F4 | JSR Wait4Char
1661 FB6E B1 E0 |upLup LDA (BufferPointer1),Y
1662 FB70 20 45 F5 | JSR WriteChar
1663 FB73 20 F3 F4 | JSR Wait4Char Wait for an XOn
1664 FB76 20 EC FA | JSR CkEndOfBuffer
1665 FB79 F0 F3 | BEQ upLup
1666 FB7B 60 | RTS
1667 |*
1668 |* Load HEX data from Input device into RAM
1669 |*
1670 FB7C 20 8B FA |LoadHexData JSR ResetBufferPointers
1671 FB7F 20 6A F5 | JSR WriteLn
1672 FB82 20 5C F7 | JSR PrintSBCAdrs
1673 FB85 20 8F F5 | JSR SendADash
1674 FB88 20 FE F6 |getLup JSR GetHexByte
1675 FB8B 20 D3 F4 | JSR SendMem1 store into mem @ BufferPointer1
1676 FB8E 20 95 F5 | JSR SendASpace
1677 FB91 20 EC FA | JSR CkEndOfBuffer
1678 FB94 F0 F2 | BEQ getLup
1679 FB96 60 | RTS
1680 |*
1681 FB97 29 0F |CkPtrForHex0 AND #0F
1682 FB99 C9 00 | CMP #0
1683 FB9B F0 03 | BEQ ckStartOn
1684 FB9D A9 00 | LDA #FALSE
1685 FB9F 60 | RTS
1686 FBA0 A9 01 |ckStartOn LDA #TRUE TRUE IF lwr nibl = hex 00
1687 FBA2 60 | RTS
1688 |*
1689 FBA3 48 |IncPointersSave PHA
1690 FBA4 E6 EA | INC TempBufferPtr
1691 FBA6 E6 E0 | INC BufferPointer1
1692 FBA8 D0 02 | BNE iSkip
1693 FBAA E6 E1 | INC BufferPointer1+1
1694 FBAC A5 E0 |iSkip LDA BufferPointer1
1695 FBAE CD 15 02 | CMP BufferEnd
1696 FBB1 A5 E1 | LDA BufferPointer1+1
1697 FBB3 ED 16 02 | SBC BufferEnd+1
1698 FBB6 B0 0A | BCS iCkOut
1699 FBB8 AD 1D 02 | LDA ExitFlag
1700 FBBB D0 05 | BNE iCkOut
1701 FBBD 9C 1D 02 | STZ ExitFlag RETURN FALSE IF NOT end of buffer
1702 FBC0 68 | PLA
1703 FBC1 60 | RTS
1704 FBC2 A9 01 |iCkOut LDA #TRUE
1705 FBC4 8D 1D 02 | STA ExitFlag
1706 FBC7 68 | PLA

µCEL TM Copyright c 1992 – JComm LAB 88

88

Experimenting With Embedded ControlControl

1707 FBC8 60 | RTS
1708 |*
1709 FBC9 91 EA |WriteTempBfrChar STA (TempBufferPtr),Y
1710 FBCB 85 FC | STA HoldAByte
1711 FBCD A5 E0 | LDA BufferPointer1
1712 FBCF 29 0F | AND #0F
1713 FBD1 C9 07 | CMP #07
1714 FBD3 F0 03 | BEQ stBfrOut
1715 FBD5 A9 00 | LDA #FALSE
1716 FBD7 60 | RTS
1717 FBD8 A9 01 |stBfrOut LDA #TRUE IF lwr nibl = hex 07
1718 FBDA 60 | RTS
1719 |*
1720 FBDB B1 EA |GetTempBfrChar LDA (TempBufferPtr),Y
1721 FBDD 85 FC | STA HoldAByte
1722 FBDF A5 EA | LDA TempBufferPtr
1723 FBE1 29 0F | AND #0F
1724 FBE3 C9 08 | CMP #08
1725 FBE5 F0 03 | BEQ gtBfrOut
1726 FBE7 A9 00 | LDA #FALSE
1727 FBE9 60 | RTS
1728 FBEA A9 01 |gtBfrOut LDA #TRUE IF lwr nibl = hex 08
1729 FBEC 60 | RTS
1730 |*
1731 FBED A5 E0 |GenerateSpaces LDA BufferPointer1
1732 FBEF 20 97 FB | JSR CkPtrForHex0
1733 FBF2 D0 19 | BNE genOut
1734 FBF4 A5 E0 | LDA BufferPointer1
1735 FBF6 29 0F | AND #0F
1736 FBF8 8D 25 02 | STA Count
1737 FBFB 20 9B F5 |spaceLup JSR Send3Spaces
1738 FBFE A9 20 | LDA #' '
1739 FC00 20 C9 FB | JSR WriteTempBfrChar
1740 FC03 E6 EA | INC TempBufferPtr
1741 FC05 CE 25 02 | DEC Count
1742 FC08 AD 25 02 | LDA Count
1743 FC0B D0 EE | BNE spaceLup
1744 FC0D 60 |genOut RTS
1745 |*
1746 |* Print 1 line for memory dump
1747 |*
1748 FC0E A5 E0 |PrintLineDump LDA BufferPointer1
1749 FC10 29 0F | AND #0F
1750 FC12 85 EA | STA TempBufferPtr
1751 FC14 B1 E0 |pLineLup LDA (BufferPointer1),Y Get memory byte
1752 FC16 20 32 F7 | JSR PrintByteSave Print to output dev
1753 FC19 20 C9 FB | JSR WriteTempBfrChar Store Ascii @ 0300
1754 FC1C 20 A3 FB | JSR IncPointersSave
1755 FC1F D0 05 | BNE sendBar
1756 FC21 20 95 F5 | JSR SendASpace
1757 FC24 80 11 | BRA plCont
1758 FC26 B1 E0 |sendBar LDA (BufferPointer1),Y
1759 FC28 20 87 F5 | JSR SendABarSave
1760 FC2B 20 32 F7 | JSR PrintByteSave
1761 FC2E 20 C9 FB | JSR WriteTempBfrChar
1762 FC31 20 A3 FB | JSR IncPointersSave
1763 FC34 20 95 F5 | JSR SendASpace
1764 FC37 A5 E0 |plCont LDA BufferPointer1
1765 FC39 20 97 FB | JSR CkPtrForHex0

µCEL TM Copyright c 1992 – JComm LAB 89

89

Experimenting With Embedded ControlControl

1766 FC3C F0 D6 | BEQ pLineLup
1767 FC3E 60 | RTS
1768 |*
1769 |* Print Ascii equivalent of PrintLineDump
1770 |*
1771 FC3F 20 95 F5 |PrintAscii JSR SendASpace
1772 FC42 A2 10 | LDX #10
1773 FC44 20 F1 FF | JSR InitTempBuffer
1774 FC47 20 DB FB |pAsciiLup JSR GetTempBfrChar
1775 FC4A D0 18 | BNE sendAsciiBar
1776 FC4C 20 DB FB |pLupBack JSR GetTempBfrChar
1777 FC4F A5 FC | LDA HoldAByte
1778 FC51 20 89 F6 | JSR IsItAscii
1779 FC54 F0 13 | BEQ pdotIt
1780 FC56 20 DB FB | JSR GetTempBfrChar
1781 FC59 A5 FC | LDA HoldAByte
1782 FC5B 20 45 F5 |pLupBack2 JSR WriteChar
1783 FC5E E6 EA | INC TempBufferPtr
1784 FC60 CA | DEX
1785 FC61 D0 E4 | BNE pAsciiLup
1786 FC63 60 |pAscOut RTS
1787 FC64 20 87 F5 |sendAsciiBar JSR SendABarSave
1788 FC67 80 E3 | BRA pLupBack
1789 FC69 A9 2E |pdotIt LDA #'.'
1790 FC6B 80 EE | BRA pLupBack2
1791 |*
1792 |* High level routine. Memory dump to output device (CIOD)
1793 |*
1794 FC6D 20 F1 FF |PrintMem JSR InitTempBuffer
1795 FC70 A9 00 | LDA #FALSE
1796 FC72 8D 1D 02 | STA ExitFlag
1797 FC75 20 8B FA | JSR ResetBufferPointers
1798 FC78 20 6A F5 |printMLup JSR WriteLn
1799 FC7B 20 5C F7 | JSR PrintSBCAdrs
1800 FC7E 20 8F F5 | JSR SendADash
1801 FC81 20 ED FB | JSR GenerateSpaces
1802 FC84 20 0E FC | JSR PrintLineDump
1803 FC87 20 3F FC | JSR PrintAscii
1804 FC8A AD 1D 02 | LDA ExitFlag
1805 FC8D F0 E9 | BEQ printMLup
1806 FC8F 60 | RTS
1807 |*
1808 FC90 AD 18 02 |NewResetVector LDA StartOfBuffer1+1
1809 FC93 8D 38 02 | STA WarmStart
1810 FC96 8D 0E 02 | STA Program1Ptr+1
1811 FC99 AD 17 02 | LDA StartOfBuffer1
1812 FC9C 8D 0D 02 | STA Program1Ptr
1813 FC9F 20 AA F5 | JSR WriteString
1814 FCA2 8D 4E 65 | RASZ 'New Reset Vector Loaded'
1814 FCA5 77 20 52 |
1814 FCA8 65 73 65 |
1814 FCAB 74 20 56 |
1814 FCAE 65 63 74 |
1814 FCB1 6F 72 20 |
1814 FCB4 4C 6F 61 |
1814 FCB7 64 65 64 |
1814 FCBA 00 |
1815 FCBB 60 | RTS
1816 |*

µCEL TM Copyright c 1992 – JComm LAB 90

90

Experimenting With Embedded ControlControl

1817 FCBC AD18 02 |NewTestVector LDA StartOfBuffer1+1
1818 FCBF 8D 11 02 | STA Program2Ptr+1
1819 FCC2 AD 17 02 | LDA StartOfBuffer1
1820 FCC5 8D 10 02 | STA Program2Ptr
1821 FCC8 20 AA F5 | JSR WriteString
1822 FCCB 8D 4E 65 | RASZ 'New Test Vector Loaded'
1822 FCCE 77 20 54 |
1822 FCD1 65 73 74 |
1822 FCD4 20 56 65 |
1822 FCD7 63 74 6F |
1822 FCDA 72 20 4C |
1822 FCDD 6F 61 64 |
1822 FCE0 65 64 00 |
1823 FCE3 60 | RTS
1824 |*
1825 |*----------------- Monitor Specific Routines ------------
1826 |*
1827 FCE4 20 F1 F3 |InitProcedures JSR SetIOToRS232
1828 FCE7 20 A3 F5 | JSR InitTerminal
1829 FCEA 20 8B FA | JSR ResetBufferPointers
1830 FCED 20 1E FA | JSR GenEndAdr
1831 FCF0 60 | RTS
1832 |*
1833 FCF1 A9 4C |InitServiceRoutines LDA #4C Install JMP instruction
1834 FCF3 8D 00 02 | STA NMIService ahead of each pointer.
1835 FCF6 8D 03 02 | STA SWIService
1836 FCF9 8D 06 02 | STA IRQService
1837 FCFC 8D 09 02 | STA IntService
1838 FCFF 8D 0C 02 | STA Prog1Service
1839 FD02 8D 0F 02 | STA Prog2Service
1840 FD05 60 | RTS
1841 |*
1842 FD06 20 F1 FC |InstallRoutines JSR InitServiceRoutines
1843 FD09 20 9E FF | JSR InstalNMIRoutine Forward Reference
1844 FD0C 20 BF FF | JSR InstalSWIRoutine FR
1845 FD0F 20 CA FF | JSR InstalIRQRoutine FR
1846 FD12 20 D5 FF | JSR InstalSelectRoutine FR
1847 FD15 20 A9 FF | JSR InstalProgram1 FR
1848 FD18 20 B4 FF | JSR InstalProgram2 FR
1849 FD1B 20 E0 FF | JSR InstalDBRoutine FR
1850 FD1E 60 | RTS
1851 |* Executed upon power-up and with '+' command
1852 FD1F A9 00 |InitMonitor LDA #FALSE = Hex 00
1853 FD21 A8 | TAY
1854 FD22 8D 2F 02 | STA ErrorMsg :Error = 0
1855 FD25 8D 1B 02 | STA ByteCount :Bytes = 0
1856 FD28 8D 17 02 | STA StartOfBuffer1 :address = xx00
1857 FD2B A9 01 | LDA #TRUE
1858 FD2D 8D 1C 02 | STA ByteCount+1 :Pages:= 01
1859 FD30 8D 38 02 | STA WarmStart :for subsequent resets
1860 FD33 A9 05 | LDA #05 :initial buffer address:=0500
1861 FD35 8D 18 02 | STA StartOfBuffer1+1
1862 FD38 A9 14 | LDA #XOn :Used by Wait4Char for
1863 FD3A 8D 33 02 | STA Key :flow control in WriteChar;
1864 FD3D A9 34 | LDA #34 :So that only 1st reset on
1865 FD3F 8D 20 02 | STA ResetFlag :power-up init's monitor
1866 FD42 A9 C0 | LDA #StackSpace :init pointer
1867 FD44 85 E4 | STA StackAddress :For Push; & Pop;
1868 FD46 20 06 FD | JSR InstallRoutines :Reset,NMI,IRQ,Debug,Et

µCEL TM Copyright c 1992 – JComm LAB 91

91

Experimenting With Embedded ControlControl

1869 FD49 A9 FF | LDA #0FF
1870 FD4B 20 86 F4 | JSR SOutputByte :SingleOutput gets := all 1's
1871 FD4E 58 | CLI :Enable IRQ & SWI interrupts
1872 FD4F 60 | RTS
1873 |* Executed with each push of reset button
1874 FD50 20 E4 FC |InitVarsEaReset JSR InitProcedures :init buff addr & I/O
1875 FD53 A9 00 | LDA #FALSE
1876 FD55 85 E5 | STA StackAddress+1 :zero user stack
1877 FD57 85 E6 | STA StackPointer :for Push; and Pop;
1878 FD59 85 EB | STA TempBufferPtr+1 :init for linedump
1879 FD5B 8D 21 02 | STA TraceFlag :turn tracing off
1880 FD5E 8D 37 02 | STA TraceVar :user's trace variable
1881 FD61 60 | RTS
1882 |*
1883 |* Initialize PROGRAM
1884 |*
1885 FD62 AD 20 02 |Initialize LDA ResetFlag
1886 FD65 C9 34 | CMP #34 Power up reset?
1887 FD67 D0 08 | BNE firstReset yes,so init monitor
1888 FD69 AD 38 02 | LDA WarmStart no,continue checks
1889 FD6C CD 18 02 | CMP StartOfBuffer1+1 Has buffer adr changed?
1890 FD6F F0 03 | BEQ byPassVars no, so don't re-init monitor
1891 FD71 20 1F FD |firstReset JSR InitMonitor yes, re-init monitor on 'warm'
1892 FD74 20 50 FD |byPassVars JSR InitVarsEaReset reset
1893 FD77 60 | RTS
1894 |*
1895 FD78 78 |Begin SEI
1896 FD79 A9 FF | LDA #0FF Init StackPointer
1897 FD7B AA | TAX
1898 FD7C 9A | TXS
1899 FD7D 20 62 FD | JSR Initialize Ck for changes, init accordingly
1900 FD80 20 F6 F2 | JSR ReadDSRBit
1901 FD83 D0 03 | BNE prog1 Init'ed w/cmdI
1902 FD85 4C 0F 02 | JMP Prog2Service Init'ed w/TestProgram
1903 FD88 4C 0C 02 |prog1 JMP Prog1Service
1904 FD8B 20 CC F5 |cmdI JSR PrintId
1905 |*
1906 FD8E 20 6A F5 |CmdInterp JSR WriteLn JTerm's Command Interpreter
1907 FD91 A9 3E | LDA #'>'
1908 FD93 20 45 F5 | JSR WriteChar
1909 FD96 20 37 F5 | JSR ReadChar capable of ~6K loops/sec w/1 MHz clk
1910 FD99 C9 31 | CMP #'1'
1911 FD9B F0 37 | BEQ ci1
1912 FD9D C9 32 | CMP #'2'
1913 FD9F F0 3B | BEQ ci2
1914 FDA1 C9 33 | CMP #'3'
1915 FDA3 F0 3F | BEQ ci3
1916 FDA5 C9 34 | CMP #'4'
1917 FDA7 F0 43 | BEQ ci4
1918 FDA9 C9 35 | CMP #'5'
1919 FDAB F0 44 | BEQ ci5
1920 FDAD C9 36 | CMP #'6'
1921 FDAF F0 48 | BEQ ci6
1922 FDB1 C9 37 | CMP #'7'
1923 FDB3 F0 4C | BEQ ci7
1924 FDB5 C9 38 | CMP #'8'
1925 FDB7 F0 55 | BEQ ci8
1926 FDB9 C9 42 | CMP #'B'
1927 FDBB F0 56 | BEQ ciB

µCEL TM Copyright c 1992 – JComm LAB 92

92

Experimenting With Embedded ControlControl

1928 FDBD C9 62 | CMP #'b'
1929 FDBF F0 5A | BEQ cib
1930 FDC1 C9 43 | CMP #'C'
1931 FDC3 F0 5E | BEQ ciC
1932 FDC5 C9 63 | CMP #'c'
1933 FDC7 F0 5F | BEQ cic
1934 FDC9 C9 44 | CMP #'D'
1935 FDCB F0 62 | BEQ ciD
1936 FDCD C9 64 | CMP #'d'
1937 FDCF F0 65 | BEQ cid
1938 FDD1 4C 92 FE | JMP contCk
1939 FDD4 20 32 FA |ci1 JSR GetAddrWP get address of buffer
1940 FDD7 20 AD F9 | JSR ShowAllParameters
1941 FDDA 80 B2 | BRA CmdInterp
1942 FDDC 20 6A FA |ci2 JSR GetPgCntWP get number of pages for buffer
1943 FDDF 20 AD F9 | JSR ShowAllParameters
1944 FDE2 80 AA | BRA CmdInterp
1945 FDE4 20 56 FA |ci3 JSR GetBytCntWP get number of bytes for buffer
1946 FDE7 20 AD F9 | JSR ShowAllParameters
1947 FDEA 80 A2 | BRA CmdInterp
1948 FDEC 20 AD F9 |ci4 JSR ShowAllParameters show buffer parameters
1949 FDEF 80 1A | BRA cint
1950 FDF1 20 7E FA |ci5 JSR GetAllPar prompt user for all buffer params
1951 FDF4 20 AD F9 | JSR ShowAllParameters
1952 FDF7 80 12 | BRA cint
1953 FDF9 20 6D FC |ci6 JSR PrintMem dump out buffer to screen
1954 FDFC 20 6A F5 | JSR WriteLn
1955 FDFF 80 0A | BRA cint
1956 FE01 20 2C FB |ci7 JSR FillRoutine fill buffer with hex character
1957 FE04 AD 1C 02 | LDA ByteCount+1
1958 FE07 C9 04 | CMP #4
1959 FE09 90 EE | BCC ci6 Print to screen IF < 4 pages
1960 FE0B 4C 8E FD |cint JMP CmdInterp
1961 FE0E 20 7C FB |ci8 JSR LoadHexData load data into buffer by hand
1962 FE11 80 E6 | BRA ci6
1963 FE13 20 F0 F1 |ciB JSR Pop set rts bit to user-pushed value
1964 FE16 20 01 F3 | JSR SetRTSBit
1965 FE19 80 F0 | BRA cint
1966 FE1B 20 F0 F1 |cib JSR Pop set dtr bit to user-pushed value
1967 FE1E 20 15 F3 | JSR SetDTRBit
1968 FE21 80 E8 | BRA cint
1969 FE23 20 84 F8 |ciC JSR PrintRegs print to screen CPU registers
1970 FE26 80 E3 | BRA cint
1971 FE28 A9 00 |cic LDA #FALSE turn off print register SBR
1972 FE2A 8D 21 02 | STA TraceFlag
1973 FE2D 80 DC | BRA cint
1974 FE2F A9 01 |ciD LDA #TRUE turn debugging on
1975 FE31 8D 1E 02 | STA DebugFlag
1976 FE34 80 D5 | BRA cint
1977 FE36 A9 00 |cid LDA #FALSE turn debugging off
1978 FE38 8D 1E 02 | STA DebugFlag
1979 FE3B 80 CE | BRA cint
1980 FE3D 20 8B FA |ciG JSR ResetBufferPointers Run program out of ram
1981 FE40 6C E0 00 | JMP (BufferPointer1)
1982 FE43 20 4D F8 |ciH JSR HexToDecimal convert 4-digit hex to decimal
1983 FE46 80 C3 | BRA cint
1984 FE48 20 EF F6 |ciL JSR GetSingleHexNum read single bit input #__
1985 FE4B 20 FD F3 | JSR GetSingleInput
1986 FE4E 20 1D F7 | JSR PrintByte

µCEL TM Copyright c 1992 – JComm LAB 93

93

Experimenting With Embedded ControlControl

1987 FE51 80 3C | BRA ci
1988 FE53 20 44 FA |ciM JSR GetDestAdWP copy buffer to indicated address
1989 FE56 AD 32 02 | LDA IOState
1990 FE59 48 | PHA
1991 FE5A A9 01 | LDA #InMem1OutMem2
1992 FE5C 20 E0 F3 | JSR SetInOut
1993 FE5F 20 16 FB | JSR MoveMemory
1994 FE62 68 | PLA
1995 FE63 20 E0 F3 | JSR SetInOut
1996 FE66 80 27 | BRA ci
1997 FE68 20 87 F5 |ciO JSR SendABarSave turn on indicated output bit
1998 FE6B 20 EF F6 | JSR GetSingleHexNum
1999 FE6E 20 7F F4 | JSR SOutOn
2000 FE71 80 1C | BRA ci
2001 FE73 20 EF F6 |cio JSR GetSingleHexNum turn off indicated O/P bit
2002 FE76 20 7A F4 | JSR SOutOff
2003 FE79 80 14 | BRA ci
2004 FE7B 20 FE F6 |ciP JSR GetHexByte push 2-digit hex to user stack
2005 FE7E 20 E1 F1 | JSR Push
2006 FE81 20 95 F5 | JSR SendASpace
2007 FE84 80 09 | BRA ci
2008 FE86 20 F0 F1 |cip JSR Pop pop 2-digit hex from user stack
2009 FE89 20 1D F7 | JSR PrintByte
2010 FE8C 20 95 F5 | JSR SendASpace
2011 FE8F 4C 8E FD |ci JMP CmdInterp
2012 FE92 C9 47 |contCk CMP #'G'
2013 FE94 F0 A7 | BEQ ciG
2014 FE96 C9 48 | CMP #'H'
2015 FE98 F0 A9 | BEQ ciH
2016 FE9A C9 4C | CMP #'L'
2017 FE9C F0 AA | BEQ ciL Note:Branches must NOT be further
2018 FE9E C9 4D | CMP #'M' than +127 or -128 from program
2019 FEA0 F0 B1 | BEQ ciM counter. Exceed this range on
2020 FEA2 C9 4F | CMP #'O' ANY branch (BRA,BEQ,BCC,etc)
2021 FEA4 F0 C2 | BEQ ciO & you may have real weird
2022 FEA6 C9 6F | CMP #'o' program operation/symptoms.
2023 FEA8 F0 C9 | BEQ cio Current version of JAsm does
2024 FEAA C9 50 | CMP #'P' not catch this type of error,
2025 FEAC F0 CD | BEQ ciP so use your LST file to check
2026 FEAE C9 70 | CMP #'p' the branch's 'Offset' value.
2027 FEB0 F0 D4 | BEQ cip
2028 FEB2 C9 53 | CMP #'S'
2029 FEB4 F0 3D | BEQ ciS
2030 FEB6 C9 73 | CMP #'s'
2031 FEB8 F0 41 | BEQ cis
2032 FEBA C9 52 | CMP #'R'
2033 FEBC F0 2B | BEQ ciR
2034 FEBE C9 72 | CMP #'r'
2035 FEC0 F0 2C | BEQ cir
2036 FEC2 C9 54 | CMP #'T'
2037 FEC4 F0 3A | BEQ ciT
2038 FEC6 C9 74 | CMP #'t'
2039 FEC8 F0 3D | BEQ cit
2040 FECA C9 55 | CMP #'U'
2041 FECC F0 40 | BEQ ciU
2042 FECE C9 75 | CMP #'u'
2043 FED0 F0 41 | BEQ ciu
2044 FED2 C9 58 | CMP #'X'
2045 FED4 F0 42 | BEQ ciX

µCEL TM Copyright c 1992 – JComm LAB 94

94

Experimenting With Embedded ControlControl

2046 FED6 C9 59 | CMP #'Y'
2047 FED8 F0 4C | BEQ ciY
2048 FEDA C9 5A | CMP #'Z'
2049 FEDC F0 56 | BEQ ciZ
2050 FEDE C9 3F | CMP #'?'
2051 FEE0 F0 58 | BEQ ciQM
2052 FEE2 C9 2B | CMP #'+'
2053 FEE4 F0 5C | BEQ ciPM
2054 FEE6 4C 8E FD |cmdinterp JMP CmdInterp
2055 FEE9 20 90 FC |ciR JSR NewResetVector load current buffer addr as
2056 FEEC 80 F8 | BRA cmdinterp new reset vector
2057 FEEE 20 BC FC |cir JSR NewTestVector load current buffer addr as
2058 FEF1 80 F3 | BRA cmdinterp new test vector
2059 FEF3 20 FE F6 |ciS JSR GetHexByte Output 2-digit hex to out port
2060 FEF6 20 86 F4 | JSR SOutputByte
2061 FEF9 80 EB | BRA cmdinterp
2062 FEFB 20 AC F3 |cis JSR CheckSum calculate MOD FFFF ck sum of
2063 FEFE 80 E6 | BRA cmdinterp current buffer
2064 FF00 A9 01 |ciT LDA #TRUE WriteChar uses XOn flow control
2065 FF02 8D 23 02 | STA XOnFlag
2066 FF05 80 DF | BRA cmdinterp
2067 FF07 A9 00 |cit LDA #FALSE WriteChar does not use XOn flow
2068 FF09 8D 23 02 | STA XOnFlag control
2069 FF0C 80 D8 | BRA cmdinterp
2070 FF0E 20 68 FB |ciU JSR UpLoad Upload current buffer to temp
2071 FF11 80 D3 | BRA cmdinterp file on host PC
2072 FF13 20 50 FB |ciu JSR DownLoad Download file from host to SBC
2073 FF16 80 CE | BRA cmdinterp
2074 FF18 20 AA F5 |ciX JSR WriteString load 2-digit hex into CPU X reg
2075 FF1B 8D 58 3A | RASZ 'X:='
2075 FF1E 3D 00 |
2076 FF20 20 FE F6 | JSR GetHexByte
2077 FF23 AA | TAX
2078 FF24 80 C0 | BRA cmdinterp
2079 FF26 20 AA F5 |ciY JSR WriteString load 2-digit hex into CPU Y reg
2080 FF29 8D 59 3A | RASZ 'Y:='
2080 FF2C 3D 00 |
2081 FF2E 20 FE F6 | JSR GetHexByte
2082 FF31 A8 | TAY
2083 FF32 80 B2 | BRA cmdinterp
2084 FF34 20 0C F4 |ciZ JSR SInputByte read singlebit port as a byte
2085 FF37 20 1D F7 | JSR PrintByte
2086 FF3A A9 43 |ciQM LDA #43
2087 FF3C 8D 20 02 | STA 220
2088 FF3F 4C 8B FD | JMP cmdI monitor version to O/P device
2089 FF42 20 1F FD |ciPM JSR InitMonitor Full init of monitor
2090 FF45 20 50 FD | JSR InitVarsEaReset
2091 FF48 80 9C | BRA cmdinterp
2092 |*
2093 FF4A A9 00 |TestProgram LDA #FALSE
2094 FF4C 8D 23 02 | STA XOnFlag Disable XOn handshaking
2095 FF4F A0 04 | LDY #4
2096 FF51 A2 FF |testLup LDX #0FF
2097 FF53 20 29 F3 |ledOn JSR BusyReadRS232
2098 FF56 CA | DEX
2099 FF57 D0 FA | BNE ledOn
2100 FF59 88 | DEY
2101 FF5A D0 F5 | BNE testLup
2102 FF5C A9 31 | LDA #'1'

µCEL TM Copyright c 1992 – JComm LAB 95

95

Experimenting With Embedded ControlControl

2103 FF5E 8D 30 04 | STA XmtReg ;
2104 FF61 20 95 F5 | JSR SendASpace
2105 FF64 AD 06 04 | LDA ClearSingleOut
2106 FF67 A9 FF | LDA #0FF
2107 FF69 20 86 F4 | JSR SOutputByte
2108 FF6C 20 E4 F2 | JSR Delay1Second
2109 FF6F 20 F6 F2 | JSR ReadDSRBit
2110 FF72 F0 DD | BEQ testLup
2111 FF74 A9 01 | LDA #TRUE
2112 FF76 8D 23 02 | STA XOnFlag Enable XOn handshaking
2113 FF79 4C 8B FD | JMP cmdI (flow control)
2114 |*
2115 |* End Test Routine
2116 |*
2117 |* Due to an assembler bug, all uses of "#>" that refer to a
2118 |* label, must be implemented at the end of all 'normal' code.
2119 |* Failure to do so will result in some weird problems because
2120 |* the addresses for your labels may be off by 3 bytes!
2121 |* #>Label designates the high byte of the label's address
2122 |* #Label designates the lower byte of the label's address
2123 |*
2124 FF7C 20 6A F5 |IRQRoutine JSR WriteLn
2125 FF7F 20 AA F5 | JSR WriteString
2126 FF82 49 52 51 | ASZ 'IRQ Interrupt'
2126 FF85 20 49 6E |
2126 FF88 74 65 72 |
2126 FF8B 72 75 70 |
2126 FF8E 74 00 |
2127 FF90 20 5C F2 |intOut JSR RestoreSXYA
2128 FF93 A9 FD | LDA #>CmdInterp push hi label address
2129 FF95 48 | PHA
2130 FF96 A9 8E | LDA #CmdInterp push lo label address
2131 FF98 48 | PHA
2132 FF99 AD 2A 02 | LDA CPUStatusReg push status reg
2133 FF9C 48 | PHA
2134 FF9D 40 | RTI
2135 |*
2136 |* Non Maskable Interrupt. XaMonV4B FFFA/FFFB:= 00 02
2137 FF9E A9 F9 |InstalNMIRoutine LDA #>NMIRoutine
2138 FFA0 8D 02 02 | STA NMIPointer+1 0200 points to NMI
2139 FFA3 A9 2A | LDA #NMIRoutine NMI service routine
2140 FFA5 8D 01 02 | STA NMIPointer
2141 FFA8 60 | RTS
2142 |*
2143 |*Hardware Reset. XaMonV4B FFFC/FFFD:= 00 F0
2144 |* If DSR bit is HI, vector to installed address on reset
2145 FFA9 A9 FD |InstalProgram1 LDA #>cmdI
2146 FFAB 8D 0E 02 | STA Program1Ptr+1 Ram vector high
2147 FFAE A9 8B | LDA #cmdI
2148 FFB0 8D 0D 02 | STA Program1Ptr Ram vector low
2149 FFB3 60 | RTS
2150 |* If DSR bit is LO, vector to installed address on reset
2151 FFB4 A9 FF |InstalProgram2 LDA #>TestProgram
2152 FFB6 8D 11 02 | STA Program2Ptr+1 Ram vector high
2153 FFB9 A9 4A | LDA #TestProgram
2154 FFBB 8D 10 02 | STA Program2Ptr Ram vector low
2155 FFBE 60 | RTS
2156 |*
2157 |* SoftWare Interrupt. XaMonV4B FFFE/FFFF:= 09 02

µCEL TM Copyright c 1992 – JComm LAB 96

96

Experimenting With Embedded ControlControl

2158 FFBF A9 F9 |InstalSWIRoutine LDA #>SWIRoutine Install pointer to SWI
2159 FFC1 8D 05 02 | STA SWIPointer+1 interrupt service routine
2160 FFC4 A9 48 | LDA #SWIRoutine The SBR installed here
2161 FFC6 8D 04 02 | STA SWIPointer will execute every time a
2162 FFC9 60 | RTS break is encountered in
2163 |* your code
2164 |* Maskable Hardware Interrupt. XaMonV4B FFFE/FFFF:=0902
2165 FFCA A9 FF |InstalIRQRoutine LDA #>IRQRoutine Install pointer to IRQ
2166 FFCC 8D 08 02 | STA IRQPointer+1 service routine
2167 FFCF A9 7C | LDA #IRQRoutine
2168 FFD1 8D 07 02 | STA IRQPointer
2169 FFD4 60 | RTS
2170 |*
2171 |* IRQ/SWI Filter. Determines whether IRQ or SWI interrupt
2172 FFD5 A9 F9 |InstalSelectRoutine LDA #>SelectInterrupt
2173 FFD7 8D 0B 02 | STA IntServPointer+1
2174 FFDA A9 95 | LDA #SelectInterrupt
2175 FFDC 8D 0A 02 | STA IntServPointer
2176 FFDF 60 | RTS
2177 |*
2178 FFE0 A9 01 |InstalDBRoutine LDA #1 The SBR installed here will
2179 FFE2 8D 1E 02 | STA DebugFlag execute if DebugFlag
2180 FFE5 8D 21 02 | STA TraceFlag is TRUE,w/ every BRK
2181 FFE8 A9 F8 | LDA #>XaDebugRoutine
2182 FFEA 85 EF | STA Debug+1
2183 FFEC A9 ED | LDA #XaDebugRoutine
2184 FFEE 85 EE | STA Debug
2185 FFF0 60 | RTS
2186 |*
2187 FFF1 A9 03 |InitTempBuffer LDA #>TempBuffer Addr:=0300
2188 FFF3 85 EB | STA TempBufferPtr+1
2189 FFF5 A9 00 | LDA #TempBuffer
2190 FFF7 85 EA | STA TempBufferPtr
2191 FFF9 60 | RTS
2192 |*
2193 FFFA 00 |loNMI BYTE 00 0200 = NMI memory vector
2194 FFFB 02 |hiNMI BYTE 02
2195 FFFC 78 |loReset BYTE 78 FD78 = Begin of Cmd Interpreter
2196 FFFD FD |hiReset BYTE 0FD
2197 FFFE 09 |loSWI BYTE 09 0209 = SWI memory vector
2198 define |hiSWI BYTE 02
2199 |*
2200 0001 | END XaMonV4B
2201 0001 %% %% %% |.

µCEL TM Copyright c 1992 – JComm LAB 97

97

Experimenting With Embedded ControlControl

Chapter 14

JAsm Cross-Assembler
...

JAsm is a cross-assembler for the 65C02 processor that runs on your IBM PC or compatible.

This program takes your assembler source code, created using your favorite editor, and
generates a binary file that the 65C02 CPU can execute, a .ROC file.

The binary values are represented as hex codes that correspond to the "mnemonic" source
code instructions such as LDA (load the accumulator).

JAsm also calculates the branch instruction offsets and adjusts the PC (program counter)
value relative to the ORG address you establish in your source code. JAsm includes some "fake"
codes or "psuedoOps" that offer you some relief to your code writing task. More on that later.

FILES
JAsm can generate several different types of files for your use. These files have unique

extensions and will now be explained:

 .LST file is a file containing a list combining your source code with the hex information generated
by the assembler, along with the program counter values and branch offsets.

Any time you have made an error in your source code, JAsm will automatically generate
a .LST file that you can view with your editor. This list file will show you where and what types of
errors are present. Errors are flagged in the list file by asterisks ***** and pointed to by a ^
character on the following source code line.

It is also possible to have JAsm generate a list file every time you assemble your source
code file, by using the Xasm.CFG file to be discussed later.

 .SYM file contains the symbol table. In this table you will find a summary of all the labels and
identifiers used in your source code that begin with an upper-case alpha character (letter). The
table will also indicate what type (what kind) of identifiers they are. The address where the label
occurs is listed to the right of each identifier. You can use these addresses in your source code
import list with other programs you write. See the CapMeter.ASM file included on the enclosed
floppy disk for an example of how this works.

.ASC is a ascii-file representation of the .ROC binary file described below. Some EPROM burners
have provisions for accepting this type of file. If you order a "bare" pc board from JComm LAB,
you will receive a floppy disk with both the .ASC and .ROC files for the XaMonV4B monitor. If you
have access to an EPROM burner, you will be able to burn your own XaMonV4B monitor
EPROM.

.ROC file is the binary object code that you will download into your SBC65V1B and execute.

µCEL TM Copyright c 1992 – JComm LAB 98

98

Experimenting With Embedded ControlControl

JAsm Operation

JAsm is easy to use. From the DOS prompt type JAsm and then <RETURN>. JAsm will
show you a menu, listing all the (source code) files with the .ASM extention. Use the arrow keys
on your keyboard to highlight the file you desire to assemble. Press the <RETURN> key. The
assembly process proceeds as follows:

➢ The JAsm displays the filename of the file being assembled at the top of the
screen.

➢ JAsm parses through your source code and indicates the number of lines of
code parsed at the window on the upper right. Any errors indicated during this
pass point to problems with your use of the MODULE (name) and END
psuedoOps.

➢ On the next two passes, JAsm generates the necessary CPU codes. The ORG
value(s) is displayed in the ORG window on the lower right of the screen during
pass two. At the end of pass two, JAsm displays the size of your object code in
Hex (base 16) and Decimal (base 10) in the upper right window.

➢ The error status of the assembly and the files generated are displayed next. If
errors are present, JAsm will pause, so that you will be sure to notice that there
are errors. Press any key to continue.

Xasm.CFG
If this file is not present in the directory containing JAsm, all the above mentioned files will

be generated. Display the Xasm.CFG file contents by using the DOS "type" command
 (type Xasm.CFG <RETURN>)
or by viewing with your favorite editor. Notice there are four BOOLEAN values (TRUE or FALSE).
The default configuration for this file is:
 FALSE
 FALSE
 FALSE
 FALSE
The outcome from using these values is that only a .ROC file will be generated each time you run
JAsm.

For example, if each BOOLEAN value in the Xasm.CFG file were declared TRUE, JAsm
would generate the following files for a source file named
 Test.ASM:
 Test.LST
 Test.SYM
 Test.ASC
 Test.ROC

You can create the Xasm.CFG file using DOS by typing:
copy con Xasm.CFG<RETURN>
 <RETURN>
 <RETURN>
 <RETURN>
 <RETURN>

µCEL TM Copyright c 1992 – JComm LAB 99

99

Experimenting With Embedded ControlControl

 FALSE<RETURN>
 FALSE<RETURN>
 FALSE<RETURN>
 FALSE<RETURN>
 (then press the F6 function key)<RETURN>

The file you have just created will instruct JAsm to only create a .ROC file.
If you want a .LST file to be created every assembly, replace the first "FALSE" encountered

in the Xasm.CFG file with "TRUE." If you want a .SYM file, replace the second "FALSE" with
"TRUE." If you want an .ASC file, replace the third "FALSE" with "TRUE."

During the normal program development cycle, you may find that your work progresses
much faster if you leave all the BOOLEAN values as "FALSE." It takes time for JAsm to generate
the extra files. As mentioned earlier, if JAsm encounters an error in your program, it will
automatically generate the .LST file so that you can locate your error.
PsuedoOps

PsuedoOps are mnemonic instructions that are not part of the 65C02's instruction set, but
are used by JAsm. Some of these special codes are intended to support you in your program
writing.

An example of all 65C02 instructions and all JAsm psuedoOps can be found in the
enclosed XaTestR.ASM file. Also see CapMeter.ASM.

Here is a description of the JAsm psuedoOps:

System psuedoOps
♦ MODULE is followed by the name of the file. It must be the same name used for the END

psuedoOps.
♦ ORG is used to declare the Program Counter value. This is the actual memory map

address where you want to start your code. (typically 0500Hex for 'ramware')
♦ END declares the end of your source code file. The filename declared here must be the

same name used in the MODULE declaration.

Byte and String psuedoOps
♦ BYTE is used to enter 1 hex byte.
♦ BYT can also be used to enter 1 hex byte.
♦ WORD is used to enter two hex bytes. Note: An ascii string following a psuedoOp must not

be longer than 31 characters.
♦ ASC used to enter ascii data as a string.
♦ ASZ is also used to enter ascii data. After the ascii data, JAsm automatically inserts a hex

0 into the object code.
♦ RASC is also used to enter ascii data. JAsm automatically inserts a hex 0D 'RETURN'

before the string.
♦ RASZ is also used to enter ascii data. JAsm automatically inserts a hex 0D 'RETURN'

before the string, and a hex 0 after the string.

µCEL TM Copyright c 1992 – JComm LAB 100

100

Experimenting With Embedded ControlControl

psuedoOp Examples
MODULE Test

ORG 0500

BYTE 0FF

BYT 0AA

WORD 0C000

ASC 'Hello World'

RASC 'Hello World'

ASZ 'Hello World'

RASZ 'Hello World'

END Test

You may want to make a short Test.ASM program using the above examples, and then look at the
LST file generated. You don't have to modify your Xasm.CFG file to have JAsm make a .LST file.
Insert a deliberate error, such as

BRA nowhere

 and JAsm will automatically generate the .LST file.

Explanation of Equates
It is possible to declare all variables, constants, pointers and addresses by using the "EQU"

psuedoOp. Nonetheless, the following psuedoOps can be used in place of "EQU" to help make
your source code more readable.

Equate psuedoOps
EQU is used to declare a constant.
ADR is used to declare an address. This address is typically a subroutine (or

PROCEDURE) that has been written in another MODULE. It can also be the hardware address of
some interface circuitry.

VAR is used to declare a common variable.
PTR is used to declare a POINTER variable.
These equate psuedoOps are used to mimic the "flavor" of Modula-2, the language

chosen to write both JAsm and JTerm. I used the Jensen Partners "TopSpeed." If you are not
familiar with Modula-2, I highly recommend learning it, even though you will probably have to
refer to books that are out of print. The next choice would be to learn the older, but widely adopted
commercially, Pascal.

You can teach yourself alot about structured Top-Down program design. If you adopt the
underlying tenants of Modula-2 or Pascal you will design and implement more efficient, readable,
maintainable, modifiable and elegant assembly language programs. By learning Modula-2, you
will have the background necessary to learn Niklaus Wirth's (the author of Pascal and Modula-2)
latest and most elegant language...the object oriented Oberon.

I have modified Modula-2 programs that I had not even looked at for years, by merely
"skimming" over the source code (like looking for a previously-read article in a magazine), finding
the PROCEDURE of interest, and then making the necessary changes.

If you are careful with the selection of your of your identifier (label,constant and variable)
names, you may find your assembly language programs easier to modify and maintain.
Remember that all identifiers must begin with an upper-case letter if you want them to show up in
the SYMbol table. Identifiers must be less that 31 characters long.

µCEL TM Copyright c 1992 – JComm LAB 101

101

Experimenting With Embedded ControlControl

TROUBLESHOOTING YOUR PROGRAMS
The following is a list of some of the things that can go "wrong" during your assembly

language experience:
➔ Trying to branch (BRA,BNE, etc) further than 127 bytes backward or 128 bytes forward.

(unfortunately, JAsm will not flag this bug)
➔ Using and unequal number or pushes (PHA) or pops (PLA) in your subroutines (SBRs). If

you enter a procedure using say, PHX (push xreg onto stack), you better not leave the
procedure without using a PLX (restore x-reg from stack) instruction.

➔ Similarly, if you use the XaMonV4B subroutines "Push" or "Pop", or "SaveRegs" or
"RestoreRegs", do not use one without the other. If you use Push twice in one subroutine, you
better use Pop the same number of times somewhere else in your program (or in the same
SBR).

➔ Failing to initialize flags, pointers or other variables in your program.
➔ Incorrectly using the Input/Output re-direction feature of the monitor. If you have I/O

directed to memory, you have to re-direct the I/O yet again to get output to the RS232 port.
Here's a real gotcha:

➔ Failing to save the CPU registers before calling a SBR (procedure) that will ultimately clobber
them.

Example: MyProcedure (you left out PHY before loading Y)

 LDY #5

 myLup JSR DoSomething

 DEY

 BNE myLup

 (you left out PLY before returning)

 RTS

In this example, if "DoSomething" uses the Y register, it better save Y before using it and
restore Y when it is done, or weird symptoms may show up in your program.
➔ Failing to use HoldAByte as a parameter passing variable for redirected I/O. See

XaMonV4B listing (using your editor's search command) for uses of HoldAByte.
➔ Forgetting to end a string with zero when using the WriteString procedure.

Example; JSR WriteString RASC 'Hello World'

WriteString will continue to treat all code following "Hello World" as if it were ascii data, resulting in
somewhat bizarre effects.

Corrected example: JSR WriteString RASZ 'Hello World'

JAsm puts a hex 0 at the end of the string. The hex 0 tells WriteString that it has found the
end of the ascii string. See CapMeter.ASM for more examples.

Another problem that can occur using WriteString has to do with punctuation. The
psuedoOp is expecting a " ' " to begin and end the string.
 Ex: RASZ 'Hello World'

Consequently, it would be a mistake to try to use the ' delimiter in a string
 Ex: RASZ 'You're funny'
 ^bug

Not all possible problems are due only to software errors. Hardware can fail too! For
example, if you fail to set the memory jumpers correctly, you may see a very weird memory dump
when using JTerm. Once I set the EPROM jumpers for a 32K X 8 when I was using only a 16K X
8. Needless to say, the output from the SBC to my dumb terminal looked pretty scary. It didn't hurt
anything but my pride!

µCEL TM Copyright c 1992 – JComm LAB 102

102

Experimenting With Embedded ControlControl

Chapter 15

JTerm Communication Software
...

JTerm is a communication program. Using JTerm, your IBM PC or compatible becomes a

terminal that you can use to communicate with the µCEL SBC65V1B single board computer/
controller.

This program has built-in provisions for sending commands and data to the SBC, and
provides the menu for the XaMonV4B monitor program residing in the SBC65V1B. In fact, JTerm
is more of a responder to the monitor program than it is a controller. Consequently, JTerm will be
described in terms of explaining the monitor commands.

Connect the serial cable from your PC to your SBC. Type JTerm followed by a
<RETURN>. Notice the menu presented to you. We will now explore the monitor.

Many of the XaMonV4B monitor functions operate on a buffer of memory at a time. The
buffer can start most anywhere in the SBC's memory map, and can be from 1 to FFFF hex bytes
long. The first eight commands of the XaMonV4B menu deal with this buffer.

Buffer Commands
1 Prompts you for the hex buffer address.
2 Prompts you for the number of hex pages (256locs/pg) in the buffer.
3 Prompts you for the number of hex bytes
4 Shows you the current buffer settings
5 Prompts you to input all the buffer settings
6 Dumps the buffer to the screen

The best way to learn these six commands is to practice using them. You can not hurt
anything as you experiment with these first six commands. If you set a buffer longer than a few
pages, and then use the '6' command, you may be in for as long wait as the SBC dumps the
memory to the screen. If you get tired of waiting, press the reset button S1 on the SBC.

Commands '7' and '8' act on the buffer itself.
7 Fill memory buffer with the hex byte you enter
8 Fills memory buffer with the hex characters you type from the keyboard
Command '8' is the 'hand-load command', used when you want to enter a special

sequence of bytes, or hand-load a program. Short programs can be entered very quickly this way.
Try the following sequence of key presses: (do not type text enclosed in brackets (), it is for
explanation only)

 5 (get all parameters)
1000 (hex address

 00 (number of pages)

 05 (number of bytes)

After the 5, SBC will feedback a summary of what you entered
 8 (hand-load command) 0102030405 (hex characters)

µCEL TM Copyright c 1992 – JComm LAB 103

103

Experimenting With Embedded ControlControl

Notice that the monitor displays the data as you enter it, and then does a memory dump,
allowing you to verify the data or program you typed in. There is no backup key. If you make a
mistake, you must re-type the data.

Memory Dump
• The memory dump screen is comprised of three basic parts:
• The PC address (Program Counter)
• The 16 byte hex line of data
• The ascii representation of the hex data.

Notice that there is a vertical bar |, dividing each 16 byte line of hex information into two 8
byte "chunks." Also notice the ascii representation of the hex data to the right of each line of hex
data, is also divided by a bar. These bars are used as a visual reference point, to make
it easier to find the byte of interest.

Memory Move
A copy of the currently defined buffer can be moved to a different location in memory with

the 'M' command. This copy may be referred to as the "destination buffer." After the 'M' command,
the monitor will prompt you for the destination's starting address.

If after doing the previous exercise you were to use the 'M' command, and used 2000 for
the destination address, you would find the hex characters 0102030405 starting at location 2000.

There is a "gotcha" to look out for. If you specify a destination address that is at the "tail" of
your currently specified source buffer, you will clobber your data when you attempt the move. In
the last example, if you had specified a dest addr of 1005, you would have clobbered the byte that
contained the 05. Again, experimentation will probably be your best teacher.

Downloading

Probably the most useful feature of JTerm is the downloader. The downloader will
transfer .ROC files you have generated with the JAsm cross assembler, to the buffer you have
declared within your SBC's memory map. Actually, only the starting address of the buffer is
needed. The downloader will automatically set the buffer size for you.
Downloading sequence

 Cntrl-D (invokes the downloader) Arrow keys (highlight the file you want to download)
RETURN (selects the file you have highlighted)
Cntrl-Z (clears the transfer)

Running the downloaded program
G (for "Go")

Uploading
You may have designed an interface that has accumulated some data in ram that you want

to store in a file. The upload feature of the monitor allows you to do this.
Cntrl-U (command for upload) The buffer you have declared will be sent to a

UpLoad.ROC file. You can exit JTerm, and rename UpLoad.ROC to a file name of your choice. If
you upload twice in a row, only the data sent from the second transfer will be present.
Checksum

s (performs a checksum of the current buffer) This checksum may or may not match the
checksum given to you by the downloader.

µCEL TM Copyright c 1992 – JComm LAB 104

104

Experimenting With Embedded ControlControl

I/O Commands
The XaMonV4B monitor allows you to control all the available I/O from JTerm. From

JTerm you can use:
 Command (Action)
 O followed by bit# (Set any of the 8 output bits High)
 o followed by bit# (Set any of the 8 output bits Low)
 L followed by bit# (Read any of the 8 input bits)
 S followed by hh (Send a byte out to the 8 output bits. hh = 2 hex characters)
 Z (Read a byte from the 8 input bits)
 B (Set the level of the uart output bit RTS, by popping last stack entry)
 b (Set the level of the uart output bit DTR, by popping last stack entry)

You can use the output bits to control small relays directly from JTerm. If you do your own
IBM PC programming, you can write programs that make simple ascii calls to the monitor, using
the O,o and L commands rather than writing firmware for the SBC. The uart output bits can be
exercised as follows:

P hh (push a hex byte onto user stack)
B (pop the formerly pushed by to the RTS bit)

 OR
b (pop the formerly pushed byte to the DTR bit) It may be helpful to you to use your

logic probe to monitor these bits as you experiment with the above instructions.
The following commands perform various system functions:
C (display CPU registers)
c (don't display CPU register until next '+' command)
D (software interrupt debug on) d (software interrupt debug off)
X (load x register with hex byte hh)
Y (load y register with hex byte hh)
If you carefully look at the XaMonV4B interrupt routines in the monitor source code, you

can spot the user-installable debug routine. This routine can be turned on or off from JTerm with
the 'D' and 'd' commands respectively. A typical debug routine prints key variables onto the
screen, or allows you to set the value of variables.
Utility

H (converts 4 hex digits to Decimal)
P (pushes next 2 hex digits entered onto user stack)
p (pops last 2 hex digits entered off of user stack)
? (displays current version of monitor)
• (resets the SBC65V1B monitor's variables)
•

Reset Vectors
When you first power up your SBC, the system (XaMonV4B) monitor program is run. If you

download a program into ram and run it, you will stay in your program until you press the reset
button S1 on the SBC. Program control will then revert to the monitor.

What if you want YOUR program to run every time you press reset? That is the purpose of
the 'R' and 'r' commands. Normally, the program counter points to the monitor at reset, and the
test program in the monitor if J15 is shorted (remember the blink test?).

By pressing R, the current buffer address will become the new reset vector when jumper
J15 is open.

By pressing r, the current buffer address will become the new reset vector when jumper

µCEL TM Copyright c 1992 – JComm LAB 105

105

Experimenting With Embedded ControlControl

J15 is shorted.
This feature makes it possible for you to load a program starting at say, 0500, type the R

command, and invoke that program every time you press reset S1 on the SBC. You can load
another program at say, 2000, and type the r command. Now you have access to either program
upon reset, depending on whether you have J15 shorted or open. I normally put my main program
on the R vector and a test program on the (lower case) r vector.

Make sure your main program has a hook back to the monitor. A simple hook that would be
in your program might be
 Exit JMP MonitorF1DE

Otherwise you may have to turn off power in order to get to the monitor. It can get even
trickier if you have battery backed ram, so be sure to put in that hook to the monitor!!

This discussion is by no means exhaustive. The best way to learn is by doing. There
should be just enough information in this chapter to make you good and dangerous!

JTerm has a couple of help keys. Here is a summary of the control keys you get with the
Control-H command.

Cntrl-B (Set the baud rate)
Cntrl-D (Download from PC to SBC)
Cntrl-F (Tell JTerm your clock speed)
Cntrl-I (Set MSB of ascii data HI)
Cntrl-K (Other help key, examples)
Cntrl-N (Print the XaMonV4B menu)
Cntrl-Q (Quit the program)
Cntrl-T (Toggle the XOn handshake on/off)
Cntrl-U (Upload from SBC to PC file)
Cntrl-X (Send an XOn each keypress)
Cntrl-Z (Clear the screen)
The baud rate command gives you the opportunity to use JTerm for your RS232

experiments, such as implementing an RS232 uart in firmware. Some call that technique bit-
banging.

The default baud rate for JTerm and for XaMonV4B monitor is 19,200 baud. To change
the baudrate on the SBC65V1B you must first download the "HotBaud.ROC" program and run it;
then type Cntrl-B and set JTerm's baudrate to the baudrate you set with HotBaud.

The clock speed command is a "kludge" for the download feature. JTerm was designed to
work on a 10 MHz system. Use the Cntrl-F command if your pc's clock speed is different than 10
Mhz.

This command sets a "magic number" within JTerm. It was designed to get around a PC
system "burp" that occurs just often enough to upset the XOn protocol used by the downloader. A
future version will remedy this problem.

As a last-resort, JTerm gives you access to the magic numbers themselves with "Set
Magic Numbers," if the preset options do not work for you.

µCEL TM Copyright c 1992 – JComm LAB 106

106

Experimenting With Embedded ControlControl

 Chapter 16

Capacitance Meter
...
Objective

Design a capacitance measurement circuit using a 555 timer as the timing element.
Theory

Refer to circuit at Figure 15. An output bit is used to trigger the 555 input pin 2, initiating a
timing cycle. The ouput of the timer pin 3 is normally low. When the 555 is triggered, the output
pin 3 goes high. This output is monitored by an input bit on the SBC. A counter implemented in
firmware measures the time, 't', that the output pin 3 of the 555 is high. The time 't' is a function of
the unknown capacitance, Cx and resistor R1-R4. The range of this circuit is approximately 10 to
65,000 picofarads (65,000 pFd = .065 uFd).
Host Computer Software Jterm

Host computer sends an ASCII 'space' character via its RS232 port, to the SBC65V1B
CPU I/O module.

The SBC firmware interprets this character as a "read capacitance" command. The SBC
makes a capacitance reading which is in turn sent out its RS232 port as a string of ASCII
characters.

If the host computer is running a dumb terminal program, the capacitance measurement is
displayed directly on the crt. A custom-written host program could process the data from the
SBC65V1B as required.

Ramware
CapMeter.ASM

A trigger pulse is created by toggling an output bit from HI, to LO and back to HI. Output of
555 is read by a single input pin bit, in a tight loop. 16 capacitance readings are taken by the
SBC, then averaged. The averaged reading is converted to its ASCII decimal representation by
the PROCEDURE "WriteCard." Zeroing for low values of capacitance is accomplished by the
PROCEDURE "Auto Zero." All values output from the SBC are represented in picoFarads (pFd).

Checkout
Place a 1uFd for Cx. Monitor the output pin 3 of the 555 with a logic probe. Trigger the 555

by momentarily connecting the trigger pin 2 to ground. The resting state of the 555 output is LO.
After triggering, the output should temporarily go Hi and then return to LO. If the output does not
return to LO, your capacitor is too large a value, or you need to re-check your wiring. Also check
power and ground. Vcc should read 5V.

Calibration Assemble the file CapMeter.ASM, using JAsm. Download the
CapMeter.ROC file using Jterm.

After downloading the firmware, and hooking up the 2 SBC I/O bits to your interface,
connect your reference capacitor to Cx. Use the highest precision (1% or better) value you can
find. You can "make" a reference cap by choosing a high qulality polystyreene or mylar cap and
measuring its capacitance value using an LCR meter. With no capacitor present, the capacitance
reading should be '0' pFd. If it doen't, use the "AutoZero" function of CapMeter. Now with your

µCEL TM Copyright c 1992 – JComm LAB 107

107

Experimenting With Embedded ControlControl

"reference" cap, insure that the readings are within 1-5% of expected. If readings are not
accurate enough for your purposes, adjust R1 until the cap reading comes up to your spec.
Adjustments can be made by inserting a 100 + pot in serires with R1, or by using different value
fixed resistors in various series or parallel connections. It is probably a good idea to use a "plug
board" while determining the proper resistor values before you solder them into your "final"
prototype.

Mechanical
This circuit can be soldered to an inexpensive single-sided "radio shack" type of

breadboard using point to point wiring. A common "plug board" works well too.

Jasm Assembly Listing

MODULE CapMeter

(*JComm LAB 21 Apr 1992 12:30 PM -Information Block -

Description: This 'firmware' drives the simple cap meter interface from

Interface Note 1 FileName: CapMeter.ASM

(*Created FROM CAL555.ASM Filesize :Source = 3519 Object Code = 269Z

System :XaMonV4B-1 on SBC65V1B

Last Mod : 20 Apr 1992

Assemblies:

Statistics : Last Hours : 1.5 Hrs/ 0000 Lines/00

Total Hours:12.5 Hrs/ 0130 Lines/40

Start Date : 27 Sep 1989

End Date: 6 Apr 1991

History: 6 Apr 1991 worked on SBC65V1A 10 Mar 1992 ported to SBC65V1B

End Info Block*)

µCEL TM Copyright c 1992 – JComm LAB 108

108

Figure 12 Simple Capacitance Meter

Experimenting With Embedded ControlControl

FROM XaMonV4B IMPORT DelaySeconds,ReadChar,WriteChar,

 SpaceEscWait,WriteLn,ClearScreen,

 WriteString,GetNoResponse,GetHexByte,

 PrintByte,WriteCard,CmdInterp,HoldAByte;

CONST

FALSE = 00;

TRUE = 01;

Escape = 1B;

Threshold = 188Z;

VAR

Count :ZPBYTE;

AverageCount :ZPWORD;

ReadFlag,ZeroAdjust,CapAdjust:ZPBYTE;

ADR

SingleBitOff = 0410

SingleBitOn = 0418

SingleBitIn = 0420

ORG = 0500;

 JMP Begin skip over procedures

InitCount LDA #0

 STA Count

 STA Count+1

 RTS

InitAveCount LDA #0

 STA AverageCount

 STA AverageCount+1

 RTS DivideBy16

 PHX

 LDX #4 divideLup

 CLC

 ROR AverageCount+1

 ROR AverageCount

 DEX

 BNE divideLup

 PLX

 RTS

AutoZero WriteString('Remove Cx, then press SpaceBar');

 SpaceEscWait;

 STZ ZeroAdjust

 TakeOneReading;

 LDA Count

 CMP #0

 BNE notDone done

 RTS notDone

 INC ZeroAdjust zeroLup

µCEL TM Copyright c 1992 – JComm LAB 109

109

Experimenting With Embedded ControlControl

 TakeOneReading;

 LDA Count

 SEC

 SBC ZeroAdjust

 BNE notDone

 WriteString('ZeroAdjust = ');

 PrintByte(ZeroAdjust);

 WriteLn;

 BRA done

GetCapAdjustment WriteString('Current Adjustment = ');

 PrintByte(CapAdjust);

 WriteLn;

 WriteString('Enter Hex Adjustment Factor>');

 GetHexByte(CapAdjust);

 RTS

AdjustReading LDA Count

 SEC

 SBC ZeroAdjust

 STA Count

 RTS

CheckForZero LDA Count+1

 BNE notZero

 LDA Count

 BNE notZero

 LDA #TRUE

 RTS notZero

 LDA #FALSE

 RTS

NormalizeCapacitance CheckForZero;

 BNE normOut = 1 if count is zero

 LDA Count+1

 BEQ smallOut

 LDA Count

 SEC

 SBC CapAdjust adjSmall

 STA Count

 LDA Count+1

 SBC #0

 STA Count+1 normOut

 RTS smallOut

 LDA Count

 SEC

 SBC #0

 BRA adjSmall

PrintReading AdjustReading;

 NormalizeCapacitance;

µCEL TM Copyright c 1992 – JComm LAB 110

110

Experimenting With Embedded ControlControl

 WriteString; ASZ ' Capacitance= '

 WriteCard(Count);

 WriteString; ASZ ' picoFarads'

 WriteLn;

 RTS

TakeOneReading InitAveCount; (16 readings are

 LDX #16Z averaged)

 countLoop InitCount; trigger555

 LDA SingleBitOff

 LDA SingleBitOn read555

 LDA Count

 CLC

 ADC #2

 STA Count

 LDA Count+1

 ADC #0

 STA Count+1

 LDA SingleBitIn

 BMI read555 *BPL (when testing w/no interface)

 LDA AverageCount

 CLC

 ADC Count

 STA AverageCount

 BCC skipAveInc

 INC AverageCount+1 skipAveInc

 WriteChar('.');

 DEX

 BNE countLoop

 DivideBy16;

 LDA AverageCount

 STA Count

 RTS

PrintMenu WriteString;

 RASC 'JComm LAB Capacitance Meter',8D

 RASC ' 1.>One Reading per Spacebar'

 RASC ' 2.>Read continuously'

 RASC ' 3.>Auto Zero'

 RASC ' 4.>Adjust Cap Reading',8D

 RASZ 'Esc to Exit'

 WriteLn;

 RTS

µCEL TM Copyright c 1992 – JComm LAB 111

111

Experimenting With Embedded ControlControl

Begin ClearScreen;

 STZ ReadFlag

 LDA #1

 STA Count+1

 PrintMenu;

 LDA SingleBitOn cI

 ReadChar;

 CMP #'1'

 BEQ ci1

 CMP #'2'

 BEQ ci2

 CMP #'3'

 BEQ ci3

 CMP #'4'

 BEQ ci4

 CMP #Escape

 BEQ ciEsc

 BRA cI ci1

 JMP TakeReadings

ci2 LDA #TRUE

 STA ReadFlag

 JMP TakeReadings

ci3 AutoZero;

 DelaySeconds(3);

 BRA Begin

ci4 GetCapAdjustment;

 DelaySeconds(2);

 BRA Begin

TakeReadings TakeOneReading;

 PrintReading;

 LDA ReadFlag

 BNE TakeReadings

 SpaceEscWait;

 LDA HoldAByte

 CMP #Escape

 BEQ lookOut

 BRA TakeReadings

lookOut CALL WriteString;

 ASZ 'Go to Monitor? '

 JSR GetNoResponse;

 BNE Begin

ciEsc JMP CmdInterp

 END CapMeter

µCEL TM Copyright c 1992 – JComm LAB 112

112

